
May 1982 Report. No. STAN-CS-82-906

Truncated-Newton Methods

by

Stephen Gregory Nash

[msa QUALITY WWEM^ a

mmmjncm sutur^Mm'i

Department of Computer Science

Stanford University
Stanford, CA 94305

19970103 067

TRUNCATED-NEWTON METHODS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

Stephen Gregory Nash

May 1982

TRUNCATED-NEWTON METHODS

Stephen G. Nash, Ph.D.

Stanford University, 1982

The problem or minimizing a real-valued function F of n variables arises in many

contexts. Most methods for solving this problem have their roots in Newton's method, i.e.

they are based on approximating F by a quadratic function Q. If the number of variables

n is large, then Newton's method can be problematic since it requires the computation

and storage of the Hessian matrix of second derivatives. Use of finite-differencing and

sparse-matrix techniques has overcome some of these problems but not all.

In this thesis, we examine a flexible class of methods, called truncated-Newton

methods. They arc based on approximately minimizing the quadratic function Q using

an iterative scheme such as the linear conjugate-gradient algorithm. A truncated-Newton

algorithm is made up of two sub-algorithms: an outer non-linear algorithm controlling

the entire minimization, and an inner linear algorithm for approximately minimizing Q.

The most important choice is the selection of the inner algorithm. When the Hessian

matrix is known to be positive-definite everywhere, then the basic linear conjugate-

gradient algorithm can be used. If not, Q may not have a minimum. We have used

the correspondence between the linear conjugate-gradient algorithm and the Lanczos

algorithm for tridiagonalizing a symmetric matrix to develop methods for the indefinite

case.

The performance of the inner algorithm can be greatly improved through the use of

preconditioning strategics. Preconditionings can be developed using either the outer non-

linear algorithm or using information computed during the inner algorithm. A number

of diagonal and tridiagonal preconditioning strategies are derived here.

Numerical tests show that a carefully chosen truncated-Newton method can per-

form significantly better than the best non-linear conjugate-gradient algorithms available

today. This is important since the two classes of methods have comparable storage and

operation counts, and they are the only methods available for solving many large-scale

problems.

m

Acknowledgments

I would like to thank the members of my reading committee—Walter Murray, Philip

Gill, Gene Gölub, and Robert Schreiber—for their advice and support in this work.

The problem was originally suggested by Walter Murray, and he has continued to make

insightful comments throughout the research. Philip Gill has also proved to be a valuable

mentor.

The general atmosphere within the Numerical Analysis Group and in the Computer

Science Department as a whole was very conducive. To a great extent, this is a result of

Gene Golub's enthusiasm for the field.

The work in this dissertation was supported in part by the National Science Foun-

dation Grant MCS 78-17697, by U.S. Army Research Office Grant DAAG29-78-G0179,

and by a Natural Sciences and Engineering Research Council of Canada Postgraduate

Scholarship. It was prepared using Donald Knuth's TEX typesetting system. The

facilities of the Stanford Linear Accelerator Center were used for the numerical com-

putations.

Finally, I would like to thank my family and friends for their support over the past

five years.

IV

Table of Contents

1. Introduction 1

1.1. Motivation 1

1.2. Notation and Basic Theory 3

1.3. Basic Results in Linear Algebra 5

1.4. Line Search Techniques 6

1.5. Rates of Convergence 9

2. The Basic Methods 10

2.1. Introduction 10

2.2. Newton's Method 10

2.3. Quasi-Newton Methods 13

2.4. Nonlinear Conjugate-gradient Algorithms 17

2.5. Adaptations and Extensions of the Traditional Methods 20

3. Truncated-Newton Methods 24

3.1. Introduction 24

3.2. Basic Description of the Method . 24

3.3. The Linear Conjugate-Gradient Algorithm 26

3.4. Indefinite Systems 30

3.5. Computing a Modified Factorization of a Tridiagonal Matrix 33

3.6. Computing a Direction of Negative Curvature 37

3.7. Minimum Residual Methods 39

3.8. Preconditioning the Lanczos Algorithm 41

4. Terminating the Linear Algorithm 43

4.1. Introduction 43

4.2. Termination Based on ||r^||2 43

4.3. Alternative Assessment Criteria 44

4.4. Practical Forcing Sequences 48

4.5. Trust-Region Methods 49

5. Preconditioning 52

5.1. Introduction 52

v

5.2. Preconditioning with a Nonlinear Algorithm 53

5.3. Diagonal Preconditioning of the Nonlinear Algorithm . 54

5.4. Diagonal Preconditioning with MINRES .58

5.5. Tridiagonal Preconditioning 60

5.6. Approximating the Product of the Tridiagonal Preconditionings 61

6. Extensions to Other Problems 63

6.1. Introduction 63

6.2. Constrained Minimization Problems 63

6.3. Problems with Linear Equality Constraints .64

6.4. Linear Inequality Constraints 67

6.4.1. Theory 67

6.4.2. Application of Truncated-Newton Methods 71

6.5. Least-Squares Problems 73

7. Numerical Results 76

7.1. Introduction 76

7.2. The assessment criterion 76

7.3. The algorithms tested .77

7.4. The test examples 78

7.5. Starting Points 81

7.6. Description of the tests 82

7.7. Discussion of results 83

7.8. A supplementary test problem ". 85

8. Adapting Truncated-Newton Methods 88

8.1. Introduction 88

8.2. Choices for sub-algorithms .89

8.2.1. Approximately solving the Newton equations 90

8.2.2. Non-linear algorithms 92

8.2.3. Linear preconditionings 94

8.2.4. Termination criteria for the linear algorithm 96

8.2.5. Computing matrix/vector products • 97

8.3. Choosing a complete truncatcd-Newtofi algorithm 97

vi

8.3.1. The large-machine case 98

8.3.2. The small-machine case 99

Appendix 101

Bibliography 110

vn

1 Introduction

1.1. Motivation

The problem of minimizing a real-valued function of n variables

minF(x) (1.1.1)
X

arises in many contexts and applications. Over the years, a large variety of methods have

been derived to solve this problem. Many of these methods have their roots in Newton's

method, i.e. they are based on approximating F by a quadratic function using first-

and second-derivative information at the current point. The quadratic function is then

minimized, and it is hoped that this minimum gives information about the minimum of

the original function.

Much work has been done to adapt and improve this basic method. In part the

motivation for these changes is that the basic method is not always defined. For example,

if the Hessian matrix is indefinite at some iteration, then the quadratic does not have a

minimum.

Variations in the methods for problem (1.1.1) have also been derived for reasons

based on the nature of the objective function F. There are basically two difficulties which

can arise. Firstly, if the number of variables n is large, then storage limitations can make

it difficult to store information about the problem. Secondly, the second derivatives of

the function F may be very expensive (or impossible) to compute.

Because Newton's method in its traditional form requires the computation and

storage of the n X n matrix of second derivatives, it can be problematic for both of

these reasons. Use of finite-differencing and sparse-matrix techniques has overcome some

of these problems, but not all.

The other chief classes of methods are Quasi-Ncwton and Conjugate-Gradient algo-

rithms. Quasi-Newton methods do not require any second-derivative information; they

still require the storage of an n X n matrix. Conjugate-gradient methods, however,

remove even this difficulty, since they only require a few n vectors.

These difficulties are not overcome without some cost. In terms of the total number

of iterations (or function evaluations) required to solve a minimization problem, Newton's

method is extremely efficient. Quasi-Ncwton methods can often approach this efficiency

1

on small problems, but the performance of conjugate-gradient methods is by comparison

erratic.

These differences in requirements and performance for the three classes of methods

are unfortunate. They imply that all minimization problems must also be put into one

of three classes, based on which algorithm is best capable of solving them on a given

machine. Unfortunately, differences between problems are not always very sharp. It

would be preferable if the distinctions between algorithms were not as great.

In the last few years, work has been done to fill in the gap between conjugate-

gradient and quasi-Newton methods. This work comes under the category of limited-

memory Quasi-Newton methods. More recently still, truncated-Newton methods have

been developed. In the context in which we will develop them, they can be viewed as a

synthesis of all three basic methods.

The great advantage of truncated-Newton methods is their flexibility. They can be

adjusted to emulate any of the standard algorithms as well as everything in-betwecn.

They have variable storage requirements. It is possible to adjust them to use varying

amounts of second-derivative information. It is also possible to fine-tune these methods

to the needs of the problem being solved. Potentially, they can also adapt to changes in

the behavior of the function being minimized.

In addition, we are concerned with the effect the computing environment has on

the choice of an algorithm. When using a large, central computing facility complete

with program libraries and technical consultants, then efficiency and stability of the

method are the only considerations. However, when a small machine is the primary device

available, then the size and complexity of the program must also be taken into account.

This situation is becoming ever more important as the cost of small machines continues

to drop, and as distributed computing becomes a more popular way of allocating machine

resources.

The main topic of this thesis is the effective implementation of truncated-Newton

methods. After some necessary preliminaries, it begins with a discussion of the three

traditional classes of algorithms, along with a discussion of the techniques which are used

to make them useful for larger classes of problems. This is followed by a description of

truncated-Newton methods in their most basic form, along with a discussion of some of

the underlying algorithms that might be used to implement them. Chapter 4 deals with

2

convergence criteria for the sub-algorithm, and Chapter 5 with preconditioning, which

is essential if these methods are to be competitive. Chapter 6 discusses extensions to

constrained and least-squares problems. Numerical results arc presented in Chapter 7.

Finally, an extensive discussion of how to adapt truncated-Newton methods for specific

problems (both through a priori information and through dynamic modification of the

algorithm) is given in Chapter 8.

1.2. Notation and Basic Theory

The principal problem we arc trying to solve in this thesis is

min F(x), (1.2.1)

where F(x) is a nonlinear real-valued function of the variables

('■' x = I :

VZr

and 3Jn denotes the n-dimensional Euclidean space. The gradient of F will be denoted

by the vector g where
dF{*) ■ , « 9i = dx , t = l,2f...,n,

and G will be used to denote the n X n matrix of second dcrivates, i.e.

c^ = d2F{x) t = l,2,...,n
1J dxidxj j = 1,2,.. .,n.

All methods considered here for solving (1.2.1) will be descent methods; that is,

the value of the objective function F(x) will be decreased at each iteration. More

specifically, except in the section which describes trust-region methods, we will principally

be concerned with line-search algorithms. As a result, all of our algorithms will have the

following general form:

1.2.2. Descent Algorithm

Dl. Given x^k\ the fcth approximation to x*, a minimum of F(x).

D2. Compute p(k\ a direction of search, such that pW g(k) < o.

D3. Find <*(*=> > 0, a scalar step-length, such that F{xW + a(fcVfc)) <

F[xW).

3

D4. Set x(fc+1) •«- xW + a^pW and return to step D2.

Step D3 is called the line-search, and it will be discussed later in this chapter. For

our purposes, step D2 will be the most significant, for the process used to compute pW

generally classifies the entire algorithm. This computation is often based on the gradient

or the Hessian at the point x^ (denoted by gW and G(fc\ respectively), or on information

accumulated in previous iterations.

A considerable amount of the work in step D2 is dependent on results from linear

algebra. The principal theoretical results will be presented in the next section, but first

some notational details will be discussed here.

In general, matrices will be denoted by upper-case Roman letters (G), and their

elements will be specified using subscripts (GtJ). Vectors will be denoted by lower-case

Roman letters, with subscripts again being used for individual elements (g, &). Scalars

will be denoted by lower-case Greek letters (a). A supcrfix Ton a matrix or vector denotes

transpose. \\y\\ denotes the Euclidean norm of the vector y. Other than those vectors

already mentioned, in the context of optimization there are two additional vectors which

have special meaning. These are

s(fc) _ ^(fc+i) _ ^(fc)^

the difference between the successive estimates of the minimum, and

the difference between the successive gradient values.

In order to be able to terminate algorithm (1.2.2), it is important to know how to

identify x*, the point which minimizes the function F. The following theorem gives

necessary and sufficient conditions for the minimum of an unconstrained real-valued

function.

Theorem 1.2.3 (a) Let x* be a relative minimum point of the twice continuously

differentiable function F. Then g(x*) = 0 and G(x*) is positive semi-definite. (See

section 1.3 for a definition of positive semi-definite.)

(b) Suppose that F is a twice continuously differentiable function mapping from S?n

to 5R. Suppose in addition that x* is a point in SRn for which g(x) = 0 and G(x) is

positive definite. Then x* is a strict relative minimum point of F.

4

1.3. Basic Results in Linear Algebra

The information in this section will be presented briefly and without proof. A much

more complete discussion can be found in Wilkinson [1965], Chapter 1.

Definitions:

1. A matrix A is symmetric if A = AT.

2. A symmetric matrix A is positive definite if

yTAy > 0, V</ ^ 0.

3. A symmetric matrix A is positive semi-deßnite if

yTAy > 0, Vy.

[Similar definitions exist for negative definite and negative semi-deßnite

matrices. A matrix falling into none of these categories is called indeFinitc.]

4. A set of vectors {ai,..., on} is linearly independent if

n

E hai = °

implies that

£,=0, j=l,...,n.

5. The space spanned by a set of vectors is the space generated by all

linear combinations of those vectors.

6. The rank of a matrix A is equal to the maximum number of linearly-

independent rows.

7. The range of a matrix A, denoted by R(A), is the space spanned by

the columns of A.

8. The null space of a matrix A, denoted by N(A), is {x \ ATx — 0}.

9. The condition number of a non-singular matrix A is defined to be

K(A)^\\A\\.\\A-%

where ||»|| is the 2-norm of a matrix.

5

10. A matrix A is lower (upper) triangular if

A is unit lower (upper) triangular if, in addition, An = 1, Vt.

Results:

1. Let A be an n by n symmetric matrix. Then there exist n orthonormal

vectors vi,...,vn and n scalars Xi,..., Xn such that

Avi = \{Vi, i = 1,..., n.

The vector V{ is an eigenvector of A, and X, is its associated eige/iva/uc.

2. A symmetric matrix of rank r has r non-zero eigenvalues.

3. A positive-definite matrix has positive eigenvalues.

4. A symmetric matrix A is positive definite if and only if it can be

factored as

A = LDLT,

where L is unit lower triangular and D is diagonal with positive diagonal

entries. [Cholesky factorization]

1.4. Line Search Techniques

As in the previous section, this will only be a brief discussion of the topic of line

searches. More complete information can be found in Gill and Murray [1979] and [1974b].

Step D3 of algorithm (1.2.2) requires that a scalar a be found such that

F(x + ap) < F{x). (1.4.1)

[The superscript W will be dropped for reasons or clarity.] One way to achieve this is to

require that

Fix + ap) = min Fix + äp). (1.4.2)
5>o

Although necessary for 1-dimensional minimization, this condition is overly stringent in

a higher-dimensional context (and of little use for constrained optimization).

At the opposite extreme, it is not sufficient to choose just any value of a such that

6

(1.4.1) is satisfied. To see this, consider the simple 1-dimcnsional problem:

F(x) = x\

x<l> = 2,

p(fc) = -1, VJfc,

QW = 2"fc.

It is easily seen that the sequence {x^} satisfies (1.4.1) but that

lim xW = l^fl = i*.
k—>oo

In order to efficiently minimize functions of several variables, and also to be able

to guarantee convergence of optimization algorithms, a compromise between these two

positions has been found to be effective. In this regard, two concepts have been shown to

be of considerable value. The first is that the search direction must not become arbitrarily

close to being orthogonal to the steepest descent direction (that is, the gradient). Usually

this is achieved by the method used to choose the search direction.

If this property is satisfied, then the second condition is that the function F[x)

must be "sufficiently" reduced at each iteration. This condition is often achieved by an

appropriate choice of step length within a line search algorithm. One such algorithm is

presented here.

(1.4.3) Line search algorithm

Let {otj} define a sequence of points that tend in the limit to the minimum

of F(x) along p. (If F(x) is smooth, this sequence can be computed by

means of some safeguarded polynomial interpolation algorithm.) Let t be

the index of the first member of this sequence such that

\g(x + atp)Tp\ < -r)gTp (1-4-4)

where Tf (0 < rf < 1) is some constant scalar. Let fi (0 < fi < ^) be

another constant scalar. Find the smallest non-negative integer r such

that

F[x)-F{x + 2-ratp) > -2-ratfig
Tp (1.4.5)

and set a = 2-rat.|

If a is computed according to this rule, it can be shown (Gill and Murray [1973a])

7

that

F(x) - F(x + ap) > 4>(j^),

where <£ is a real-valued function such that, for any sequence {cjt},

lim <f>(ck) = 0 implies lim Cfc = 0.
fc->oo k-too

An important property of conditions (1.4.4) and (1.4.5) is that if p, is chosen as a small

value (say 10-4) then, unless F(x) is a pathologically ill-behaved function, any value of

at satisfying (1.4.4) automatically satisfies (1.4.5) with r = 0. In this case the line search

algorithm reduces to finding a scalar a such that

\g(x + ap)Tp\ < -r}gTp.

The value of 77 can be specified by the user and can be used to give a step length that is

well-suited to the problem being solved. Tf rj is chosen as 0.9, the algorithm will generally

compute a "crude" value of a, provided it satisfies (1.4.5). This value will often be a0,

the initial guess for a. If rj is chosen as zero, a will satisfy (1.4.2), the condition for an

exact line search.

In order for certain asymptotic convergence rates to be attained, it is often necessary

that ultimately a = 1 for VA; > K. For this reason, a0 = 1 is a common feature of line-

search algorithms, but it is certainly not the only possibility. Davidon [1959] suggested

the following choice for (XQ

ao = -2(FW - iT(est))/&(A:)Tp(fc)

whenever the quantity on the right hand side is less than or equal to 1. Here, F(est) is a

user-specified estimate of the function value at the solution. (It is common for the user

to have some a priori information about the function F. If not, the choice ao = 1 can

be used.) This formula has been found to be quite successful computationally.

For nonlinear conjugate-gradient algorithms (described in the next chapter), a fur-

ther condition in the line search is required in order to insure the descent property of the

search direction p(fc+1) at the next iteration. Details of these requirements can be found

in Gill and Murray [1979].

One final remark that is relevant to the general topic of this thesis concerns the

computation of the sequence {ay} in (1.4.4). In many situations, this sequence will be

8

computed using function and gradient values. However, when the gradient and function

are expensive to compute relative to the cost of computing the function alone (i.e. twice

the cost), this sequence can be computed using function values only (sec Gill and Murray

[1974b]).

1.5. Rates of Convergence

In the chapters to follow, we will be concerned with the speed at which various

algorithms converge. The following definitions will be useful for our purposes.

1. A sequence {x^k'}, converging to x , is said to converge with Q-order

m if

I'm V—, —ü < oo. (1.5.1)
Jfc-oo ||a;(fc) - x \\m v '

2. The sequence {x^} is said to converge Q-superlinearly if

||x(fc+i) _ a;*||
lim 1L LJI = 0. (1.5.2)

3. The sequence {i'*'} is said to converge with R-order m if

\\xW-x*\\<ßk fc = 0,l,... (1.5.3)

where {ßk} is a sequence that converges to zero with Q-order m.

The most important instances of definition 1 arc m = 1 (Q-linear convergence)

and m = 2 (Q-quadratic convergence). Because Q-order rates of convergence are more

important for our purposes, the label Q- will often be dropped in the discussions to follow.

Only R-order rates will be distinguished.

For a more complete treatment of rates of convergence, see Ortega and Rheinboldt

[1970], pp. 281-298.

2 The Basic Methods

2.1 Introduction

Although we have so far mentioned only three basic classes of methods for solving

the unconstrained minimization problem (1.2.1), within each class there are a great many

varieties, and choice of the exact algorithm to use is not always easy. In the absence of

other considerations, Newton's method is almost always the method of choice, at least

in its modern safeguarded versions. Other methods can be considered as compromises to

Newton's method.

The three classes of methods will be discussed from that perspective, since it leads

naturally to the discussion of truncated-Newton methods in the next chapter. Newton's

method will be discussed first; this will be followed by descriptions of quasi-Newton and

conjugate-gradient methods. In the last section, extensions and adaptations of these

algorithms to larger classes of problems are presented.

It should be pointed out that all the methods in this and the next chapter will be

developed as linesearch algorithms. Alternative versions of these methods employing

trust-region schemes will be presented in a later chapter.

2.2 Newton's Method

Since it is impossible to have a direct method for solving the unconstrained mini-

mization problem (1.2.1) in general (such a direct method would imply that there existed

a direct method for finding roots of arbitrary polynomials), we must rely on iterative

methods. In the case of minimization, these usually take the form of finding some ap-

proximation to the objective function F, computing its minimum, and then using this

point to compute a better approximation to the minimum of the original function.

For Newton's methods, this approximate function is based on the expansion of F in

a Taylor series:

F(XW + p) = ir(x(0)) + pTVF(xW) + iprV2F(z(°))p + R3(x
(0),p), (2.2.1)

where R3(x
(0),p) represents the higher-order terms in the series. From now on, we will

denote the gradient of F as

g = g(x) = VF(x),

10

and the Hessian as

G = G{x) = V2F{x).

To derive Newton's method, we drop the remainder term in (2.2.1). If we denote F^ =

F(i(°)), then
min F{x) = min F{xm + p)

x p

f« min Q{p)

(0) ■ r,

(2.2.2)

= min
p

FW + gT
P+iP

TGp

We have now approximated F by a quadratic function. Taking the derivative of Q{p) in

(2.2.2) and setting it equal to zero, we obtain the so-called Newton equations for the step

to the minimum of the quadratic function:

Gp = -g. (2.2.3)

This formula, and its equivalent version in (2.2.2) will be fundamental in the work to

follow.

In its basic form, Newton's method cannot be used, since it is not always defined

or meaningful. For example, away from the solution x , there is no guarantee that the

matrix G will be positive definite. This means that (2.2.3) may not have a solution, or

that the minimum in (2.2.2) may not exist. Also, we are insisting that the search direction

p be a descent direction, i.e. pTg < 0, which may not be true if G is not positive definite.

Many authors have suggested ways of safe-guarding Newton's method so that the

search-direction will be appropriately defined at each iteration. The most successful

of these schemes involve replacing G by a related positive-definite matrix (see Murray

[1972]).

Indefiniteness is usually detected and corrected by computing and, if necessary, ad-

justing some decomposition of the matrix G. Greenstadt [1967] proposed using a spectral

decomposition and replacing negative eigenvalues with their moduli. Unfortunately, this

is a very expensive operation—and frequently unnecessary as G is often positive definite.

Indefiniteness can also be detected using a Cholesky factorization (or one of its variants).

Details of this work can be found in Gill and Murray [1974a], Bunch and Parlett [1971],

Dax and Kaniel [1977], etc.

It is not enough to replace G by any positive-definite matrix G. If the norm of

E = G — G is large, then ||p|| will be small, and the algorithm may not converge. It is

11

thus important to be able to bound the norm of the modification matrix E.

Simply replacing G by a positive-definite matrix is not sufficient to define a method.

Other problems can also occur during a minimization process. For example, it is not

always clear how to obtain a descent direction at a saddle point, that is, when g = 0

and G is not positive definite. The methods described in the previous paragraph can all

be used to compute a direction of negative curvature in this event. Such a direction is

defined by the condition

pTGp < 0.

An advantage of the Gill and Murray approach is its simplicity, and there is no

evidence that it is less efficient than alternative methods. Since the truncated-Newton

algorithm in the next chapter owes much to this method, some details of the algorithm

will be discussed briefly here.

This algorithm is based on the result that a symmetric matrix G is positive definite

if and only if it can be factored in the form

G = LDLT, (2.2.4)

where D is a diagonal matrix with positive diagonal entries and L is a unit lower triangular

matrix. This suggests the following technique. Attempt to compute the Cholesky

factorization (2.2.4) of G. If at any stage Da turns out to be negative or zero, add some

positive quantity En to Gn to correct the problem. Monitor the size of the elements of

L, and if they are "too large," further increase the size of En- Now continue with the

factorization.

Exact formulas for this process can be found in the Gill and Murray paper. The end

result is that we have computed the Cholesky factorization of

G + E = LDLT, (2.2.5)

where E = diag(J5,-,-). It can be shown that E is identically zero whenever G is

"sufficiently positive-definite." Since it would probably be necessary in any case to, com-

pute the factorization (2.2.4) to solve the Newton equations (2.2.3), the factorization

(2.2.5) can be considered as a natural by-product of the basic Newton method. Using

this factorization, we obtain the modified-Newton equations for the step to the minimum

of the modified quadratic" function:

(G + E)p = -g. (2.2.6)

12

The resulting modificd-Newton algorithm can be described as follows:

(2.2.6) Modified-Newton Algorithm

Nl. Given x.

N2. Compute p from (2.2.3), (2.2.6), or related formulas.

N3. Find a such that F[x + ap) < F{x).

N4. Set x *— x + ap and return to step N2.

This algorithm has been left deliberately vague in order to allow for the many possibilities

discussed above for steps N2 and N3.

Under a variety of conditions, it can be shown that the above algorithm is globally

and locally quadratically convergent. Although more general results can be found (see,

for example, Ortega and Rhcinboldt [1970], pp. 421-430), the following theorem will be

adequate for our purposes.

Theorem (2.2.7) Suppose that F : 3Jn —>• 9? is twice continuously differentiate in an

open convex set D and that there is an x in D such that g(x) = 0 and G(x) ispositive

definite. Then there is an open set S which contains x* such that for any i^ G 5 the

Newton iterates are well-defined, remain in S and converge to x . Moreover, there is a

constant ß such that

||a;(*+i) _ a:*|| < ß\\xW - a;*||2, jfc = 0,1,....

2.3. Quasi-Newton Methods

The methods of this section have also been referred to in the literature as secant

methods, variable-metric methods, etc. Here, we will refer to them as quasi-Newton

methods.

In the previous section we computed the search direction p^k> as the minimum of a

strictly convex quadratic function or, equivalcntly, as the solution of the system of linear

equations (2.2.6). Both of these methods require the Hessian matrix G^k\ It might be

hoped that similarly successful methods might be derived from minimizing

Q(p) = ipTBWp + pTgW, (2.3.1)

or equivalently, solving

B^p = -gW, (2.3.2)

13

where B^ is some suitably chosen approximation to G^k\

In one dimension, there is a well-known algorithm of this type, called the secant

method. In that method,

iply ing through by s^ gives

B(k+i)8(k)==yW^ (233)

Considering the methods derived from (2.3.2) as extensions of the one-dimensional

secant method, it is natural to insist that (2.3.3) be satisfied in the n-dimensional case as

well. In this context, (2.3.3) will be referred to as the quasi-Newton condition and will

be usd to define this class of methods.

In n dimensions, (2.3.3) is insufficient to uniquely specify B^k+1^ and further restric-

tions are required to insure that an algorithm of this type is well-defined. Although the

historical development of these methods was somewhat haphazard, it is now known that

all the major quasi-Newton methods can be derived in the following fashion:

(2.3.4) Quasi-Newton Update

Ul. Given flW.

U2. Choose a set of properties P which i?(fc+1) must preserve. (Some

typical choices are symmetry, positive-definiteness, a particular sparsity

pattern, etc.)

U3. Choose a matrix norm ||-||JW.

U4. Define i?(fc+1) as the matrix which satisfies (2.3.3), preserves the

properties P, and which minimizes ||I?(fc+1) — JB^HAT.

Various specific updates are then obtained by specifying the set of properties P and by

choosing a norm \\-\\M• The following few paragraphs will outline the principal updates

in use today. [For simplicity in the following discussion, we will denote B = B^k>, B =

A simple formula, known as Broyden's update, is obtained by letting P be void and

by choosing ||-||Af to be the Frobcnius norm. Then

B = B+[*^4^- (2-3.5) sTa

14

For solving systems of non-linear equations, (2.3.5) is quite satisfactory, but for

function minimization it is inadequate. For example, because the Hessian matrix is

symmetric, it would be desirable to insist that the update formula have the property of

hereditary symmetry; that is, that B be symmetric whenever B is.

Two choices for ||-||M lead to the two following symmetric updates. If ||-||w is chosen

as the Euclidean 2-norm, then the symmetric rank-one formula is obtained:

On the other hand, if ||-||jvf is chosen to be the Frobenius norm, then the Powell Symmetric

Broyden (PSB) update is obtained:

B^-B l {v-Bs)BT+a{y-Bs)T (y-Bsfs T
BPSß -B+ -5J (^s)2-8S • (2-3J)

Another property of considerable significance is hereditary positive-definiteness. If

the matrix B is guaranteed to be positive definite and bounded, then the search direction

is guaranteed to be a descent direction. If a positive-definite approximation is not chosen,

then modification schemes similar to those necessary for Newton's method would need

to be invoked. Since G is positive semi-definite at the solution, the restriction that B be

positive definite will not asymptotically prevent superlinear convergence.

The results for positive-definite updates are not quite as simple as for symmetric

updates. Again, choosing ||-||M to be the 2-norm or the Frobenius norm leads to the

following two update formulas. But in this situation, the vectors y and s are no longer

arbitrary. For the updates to retain positive-definiteness, it is necessary that yTs > 0.

This property can be assured to hold by performing a sufficiently accurate line search.

With this in mind, then, the two updates are, with the 2-norm (the Davidon-Fletcher-

Powell (DFP) update):

{y - Bs)yT+ y[y - Bs)T {y-Bs)Ts T

yTa {yTs)2 -ÖDFP = B + Y —yy1 (2.3.8)

and with the Frobenius norm (the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update):

£BFGS - B + ^r - sTßs . (2.3.9)

Computationally, it has been found that (2.3.9) is the most successful update known for

general minimization (see Gill, Murray, and Pitfield [1972]).

15

A quasi-Newton approximation can be initialized in a number of ways. The simplest

choice, and the only choice in the absence of addition information about the Hessian,

is to set B^ = I. If it is feasible to compute some second-derivative information,

this can also be used to initialize the approximation, as can information from previous

minimization steps, if the problem being solved is one of a sequence of similar problems.

If a trust-region strategy is being used in combination with the quasi-Newton method,

then the bounds on the variables can be used to derive an initial approximation to the

Hessian (see Powell [1970]).

To compute the search direction, it is necessary to solve the system of linear equa-

tions (2.3.2). It may appear that this will require 0{n3) operations at each iteration, but

actually, it is possible to reduce this to 0[n2) operations in either of two ways.

The first observation is that since all of the update formulas are of low rank, it is

simple to apply the Sherman-Morisson formula and obtain low-rank updates for H =

B"1 (see Stewart [1967]). Using the inverse update, the solution of (2.3.2) would amount

to no more than multiplication by the matrix //, an 0(n2) process. However, this is

unstable. • •

The second idea, and this is what is used in the best algorithms today, is to update

a factorization of B rather than B itself. For example, if a symmetric approximation B

is stored in the form

B = LLT,

then solution of (2.3.2) involves only two back-substitutions, again an 0(n2) process.

Details of how various matrix factorizations can be updated efficiently can be found in

Gill, Golub, Murray and Saunders [1974].

Under fairly mild restrictions, quasi-Newton methods can generally be shown to

exhibit global and superlinear convergence. The following theorem (from Dennis and

More [1977], page 82) is typical and adequate for our purposes.

Theorem 2.3.1. Let F : tRn -*■ 5R be twice continuously differentiablc in an open

convex set D, and assume that g[x*) = 0 and that G(x*) is positive definite for some x

in D. Suppose in addition that

\\G(x)-G(x*)\\<1\\x-xt\\

for some constant 7 and for all x in D. Suppose that the algorithm (1.2.2) is implemented

16

by choosing

£?(fcVfc) = -gW

where B^ \s obtained using a BFGS or DFP update with B<0' = /. Also, suppose that

aW is determined using the line search formulas (1.4.4) and (1.4.5), and that

oo

X>(fc)-V||<+oo.
fc=0

Then {x^} converges superlinearly to x*.|

2.4. Nonlinear Conjugate-gradient Algorithms

The (linear) conjugate-gradient algorithm of Hestenes and Stiefel [1952] was

originally designed to solve the system of linear equations

Ax = b (2.4.1)

where A is a positive-definite square matrix. As indicated earlier, this is equivalent to

minimizing the quadratic form

. Q{x) = \xTAx - xTb. (2.4.2)

For clarity, we will give an outline of the algorithm here. A more complete derivation

from another point of view can be found in section 3.2.

The solution x of (2.4.1) will be computed as a linear combination of A-conjugate

directions. That is,

x = X) <*iPi (2-4-3)
t

where

pfApj = 0, for i 7^ j.

Notice that the concept of A-conjugacy is equivalent to the concept of orthogonality if

the inner-product is defined as

(pi,P2) = pfAp2.

This implies that any set of A-conjugate vectors will also be linearly independent.

If the representation (2.4.3) for x is substituted into (2.4.2), then minimizing Q(x)

17

becomes equivalent to solving a sequence of one-dimensional minimization problems:

min
X
in Q(x) = min Q\J>2 «jfcPfcJ

= min |i(£ atPl) A(J^ oyp,-) - (^ <*iPi) bj

= J^ f min {iat
2pjkpi - a<pf6} J

= min
a

(due to the A-conjugacy of the vectors p,). Each term in the final summation is a

minimization problem involving only the coefficient a,, so that the original minimization-

problem (2.4.2) has been completely decoupled into a set of trivial one-dimensional

minimization problems.

The linear conjugate-gradient algorithm is quite simple to describe. Let x0 be some

initial guess of the solution to (2.4.1). At each stage, compute the current residual rjt =

b — Axk- If Tk = 0, accept Xk as the solution of (2.4.1) and terminate the iteration.

Otherwise, compute a new ^-conjugate direction p/t (using the current residual and the

previous yl-conjugate direction Pk-i), and minimize Q[x) along the line which starts

at Xk and moves in the direction pk (this corresponds to minimizing one term in the

summation above).

Although the conjugate-gradient algorithm is described as an iterative method, it will

terminate after a finite number of iterations in exact arithmetic. If m is the dimension of

the system of equations, then there can be at most m A-conjugate vectors {pfc} (because

yl-conjugate vectors must also be linearly independent). Since the solution x to (2.4.1) is

expressed in terms of {pit}, the conjugate-gradient algorithm must converge in at most

m iterations.

18

One computational form of the linear conjugate-gradient algorithm is as follows:

Given an initial guess XQ.

For k = 0,1,...

rk = b - Axk

ßk = rZrk/rZ_fk-.u ß0 = 0

Pk = Tk + ßkPk-l

<xk = rlrk/pZApk

Zjfc+l = %k + <*kPk'

A useful property of this algorithm is that the vectors {rk} are mutually orthogonal:

rfrj = 0, if »' 7^ j,

and the vectors {pk} are mutually ^-conjugate:

pjApj = 0, if t 7^ j.

It is a relatively simple problem to adapt the linear conjugate-gradient algorithm

to solve general nonlinear problems. Nonlinear conjugate-gradient algorithms are based

on the Newton formulas (2.2.2) and (2.2.3). In this case, the underlying assumption is

that F(x) is a quadratic function, i.e. a function with a constant Hessian matrix. The

formulas for the linear conjugate-gradient algorithm are then applied to the nonlinear

function.

The nonlinear conjugate-gradient algorithm computes a new search direction using

the formula

.p(fc+1) = -ff(
fc+1) + /j(fc)p(fc). . (2.4.4)

The determination of a^k> is now a univariate minimization problem. Various choices for

the scalar ß^k> lead to the various versions of the algorithm. The three principle formulas

(all equivalent in the case where F really is a quadratic function) are:

1. Fletcher-Reeves

ßW = \\gt^)\\lß^)\\l (2.4.5)

2. Hestenes-Stiefel

ßW = yW TgV<+V/yWTpW (2.4.6)

19

3. Polak-Ribiere

ßw = yw Vfc+1)/lb(fc)lli- (2-4.7)

In the non-quadratic case, these formulas have quite distinct properties. For example,

(2.4.6) guarantees that yW p(fc+1) = 0 (a property of the quadratic case) irrespective of

the accuracy of the line search or any possible non-quadratic behavior of the objective

function. Also, Powell [1977] has shown that (2.4.5) may lead to slow convergence in the

general nonlinear case when exact line searches are performed.

In the quadratic case, the conjugate-gradient algorithm will theoretically converge

in n iterations and will have generated n linearly independent search directions p'fe).

For this reason, Fletcher and Reeves [1964] suggested abandoning (2.4.4) after a cycle

of n line searches, and setting p(k+1) as the steepest descent direction g(k+iK This

strategy is known as restarting. Since then, Powell [1977] and others have suggested

other restarting strategies, and these have considerably improved the performance of

nonlinear conjugate-gradient algorithms.

McCormick and Pearson [1969] have shown that, for a wide class of functions, the

restarted conjugate-gradient algorithm is n-step superlinearly convergent, i.e.

II (nfc+n) _* II

,lim n im,) V = °- (2-4-8) fc-»oo ||a;lnfcJ — x ||

This result depends critically on the use of restarting. Powell [1976] has shown that

algorithms that do not contain a restarting strategy almost always converge linearly.

The result (2.4.8) may be somewhat misleading. In general, a successful conjugate-

gradient algorithm should converge in In to 3n iterations, so that asymptotic behavior

of the sort described by (2.4.8) would never be observed. Thus, for practical purposes,

nonlinear conjugate-gradient algorithms can be considered to exhibit a linear rate of

converge, and the motivation for restarting is not to achieve a superlinear rate of con-

vergence.

2.5. Adaptations and Extensions of the Traditional Methods

The three main classes of methods are each associated with a particular class of

problems to which they are ideally suited. The correspondences are as follows:

1. Newton's method: small and moderately sized problems where the

20

Hessian matrix is easy or cheap to compute.

2. Quasi-Newton methods: small and moderately sized problems where

the Hessian is difficult or expensive to compute.

3. Conjugate-gradient methods: large problems.

For small problems, whenever possible a user would prefer to use Newton's method over

quasi-Newton methods, and quasi-Newton methods over conjugate-gradient methods,

because the relative efficiencies of the former methods are so much better. It should

be remembered, however, that for particular problems we cannot be assured that a

given method works better than another. There are reasons to suppose that the relative

efficiencies of the three approaches are different for large problems, when it is possible

to still apply all three methods (see Thapa [1980], Gill and Murray [1979]).

Much work has been done to extend Newton and quasi-Newton methods to larger

classes of problems, and to modify conjugate-gradient methods to give them some of the

properties of the other two classes of methods.

Newton's method is relatively easy to extend to large problems. At each iteration!

it is necessary to solve a system of linear equations and, provided the Hessian is sparse,

this can be achieved using sparse matrix methods (see, for example, Bunch and Rose

[1976]). For most problems, however, second derivative information will not be available.

By using a finite-difference approximation to G, Newton's method can be extended to

the case where only first derivatives are known. In the dense case, this implies at least

n additional gradients would be required. For large problems or even moderate-size

problems, this is a prohibitive cost. Fortunately, if the Hessian is sparse it can be

approximated in considerably less than n gradient evaluations. Details of this work can

be found in Thapa [1980], Powell and Toint [1979].

A second possibility is to hold G fixed for several iterations. This idea has been

explored by Brent [1973], but has been found to be less effective than using quasi-Newton

methods (sec, for example, Broydcn [1971]). For special problems this method can work

well. When the cost of factoring the Hessian matrix dominates the cost of computing it,

or when the Hessian matrix is nearly constant, this can be the method of choice.

The extension of quasi-Newton methods to large problems is much more complex.

The updates given in section 2.3 will not in general give a sparse Hessian approximation

even if the actual Hessian is sparse. To overcome this deficiency, sparse updates have

21

been developed. This involves adding a sparsity condition in step U2 of the update

algorithm (2.3.4). Schubert [1970] developed a sparse update for nonlinear systems of

equations. A useful update for optimization was derived independently by Marwil [1978]

and Toint[l978]. With these updates available, sparse matrix techniques are then used

to solve the system of equations (2.3.2) for the search direction p.

Currently, it appears that sparse quasi-Newton methods are chiefly of theoretical

interest. First of all, the sparse updates are no longer of low rank (in fact, they are in

general of rank n) so that the converse of the dense case is now true and quasi-Newton

methods take more algebraic operations per iteration than sparse Newton methods.

Secondly, although they can be shown to converge theoretically at a superlinear rate,

the asymptotic regime is in practice slow to set in, and these methods are usually less

efficient than sparse-Newton methods (see Thapa [1980]).

Steihaug [1980] has derived a class of sparse approximate quasi-Newton updates,

and has shown that algorithms based on them can be made to converge globally and

superlinearly. This class is obtained by computing a sparse quasi-Newton update itera-

tively using the linear conjugate-gradient algorithm. No practical experience has yet

been reported on these methods.

Although both Newton and quasi-Newton methods will continue to be improved,

they critically depend on the assumption that the Hessian matrix is sparse. For uncon-

strained problems, this is almost always true. For constrained problems, however, the

equivalent equations that require solution involve the projection of the Hessian matrix.

Although the Hessian matrix and the matrices defining the projection may be sparse, the

projected Hessian is often dense. Except in special cases, for such problems the direct

application of Newton or quasi-Newton methods (as we have described them so far) is

unlikely to be successful.

Because conjugate-gradient methods are so frugal in their storage requirements,

attempts have been made to modify them to make them behave more like quasi-Newton

methods. This group of methods is generally referred to as limited-memory quasi-Newton

methods. Since the standard quasi-Newton updates described in section 2.3 only involve

a few low-rank updates to an initial matrix, it is possible to apply them to a vector

and only store the few vectors needed to define the low-rank portion of the update. The

storage available determines the number of updates used. Because the size of the problem

22

prevents the solution of the system of equations (2.3.2), inverse updates are generally

used in this application. Details of these algorithms, as well as a great many numerical

examples illustrating their performance, can be found in Gill and Murray [1979].

Another technique which has been used to improve the performance of nonlinear

conjugate-gradient algorithms is preconditioning. These algorithms will converge in one

iteration if f(x) is a quadratic function with Hessian matrix equal to the identity. The

idea behind preconditioning is to use information about the problem (obtained either a

priori, or dynamically as the problem is being solved), to modify the original problem

at each iteration so that it behaves more like this model problem, and hence is easier to

solve. Because preconditioning is an idea of such general usefulness, it will be discussed

in considerably more detail in Chapter 5.

Efforts have also been made to extend conjugate-gradient methods towards Newton's

method. This work comes under the category of truncated-Newton methods, and is the

main subject of this thesis. The basic theory behind these algorithms will be outlined in

the next two chapters.

23

3 Truncated-Newton Methods

3.1. Introduction

In the last chapter, we discussed the three traditional classes of methods for solving

the basic unconstrained minimization problem (1.2.1). All the methods, as we saw, were

based on the solution of the Newton equations (2.2.3). Truncated-Newton methods are

no exception. In a sense, they are the converse to quasi-Newton methods. Quasi-Newton

methods compute a search direction by exactly solving an approximation to the Newton

equations, whereas truncated-Newton methods do so by approximately solving the exact

Newton equations.

There are certain advantages to this approach. First of all, we are always dealing

with exact second-derivative information; in other words, the sub-problem we are solving

is more closely related .to the actual problem we are interested in. Secondly, since we

only need an approximate solution to (2.2.3), we can use an iterative method to solve

it. Iterative methods generally have very low storage requirements, and do not explicitly

require the Hessian matrix.

In the next section, we will briefly describe these methods, mention some of the

iterative methods that have been proposed for solving (2.2.3), and indicate some of the

problems that can arise. In the final sections, the linear conjugate-gradient and related

algorithms will be derived via the Lanczos algorithm, and it will be shown how to use

these algorithms to overcome the above-mentioned problems. Further aspects of this

class of algorithms will be left to later chapters.

3.2. Basic Description of the Method

Because Newton's method is based on a Taylor series expansion near the solution

of the minimization problem (1.2.1), there is no guarantee that the search direction it

computes will be as crucial far away from x*. In fact, at the beginning of the solution

process, a reasonable approximation to the Newton direction may be almost as effective

as the Newton direction itself. It is only gradually, as the solution is approached, that

the Newton direction takes on more and more meaning.

This suggests using an iterative method to solve the Newton equations. Moreover,

it should be an iterative method with a variable tolerance, so that far away from the

24

solution, (2.2.3) is not solved to undue accuracy. Only when the solution is approached

should we consider expending enough effort to compute something like the exact Newton

direction. As we approach the solution, the systems of equations we are required to solve

become progressively more similar. Consequently it is possible that a closer approxima-

tion to the exact solution can be determined with no increase in effort by utilizing past

information.

Sherman [1978] suggested using Successive-Over-Relaxation (SOR). This is the

simplest of a whole class of methods that have been found to be effective for solving

linear systems arising in partial differential equations. However, it is difficult to get SOR

methods to perform well on general problems. Also, they appear to be prohibitively

expensive to use in the context of truncated-Newton methods. The number of linear

sub-iterations required to achieve superlinear convergence increases exponentially at each

non-linear iteration.

Much better suited for this application is the linear conjugate-gradient algorithm.

Although it is ideal for problems where the coefficient matrix has only a few distinct

eigenvalues, it is guaranteed to converge (in exact arithmetic) in at most n iterations

for any matrix. Thus, the type of exponential growth mentioned above for SOR-type

methods is impossible, at least theoretically. Also, it can be shown that the linear

conjugate-gradient algorithm is optimal-in a sense to be defined later.

A requirement of both of these methods is that the coefficient matrix must be

positive-definite. As remarked earlier, the Hessian matrix is only guaranteed to be positive

semi-definite at the solution and may be indefinite elsewhere. Thus, whatever iterative

method chosen to solve (2.2.3), it must be able to detect and cope with indefinite systems.

This is very closely related to the situation with Newton's method, but in this case, we

are not planning to perform a Cholesky factorization of the Hessian matrix, making it

difficult to modify it directly. The next two sections will describe how to circumvent this

problem in the case of the linear conjugate-gradient algorithm. Because the SOR-bascd

methods are prohibitively expensive to use, even in ideal circumstances, they will not be

considered further.

Paige and Saunders [1975] have developed two conjugate-gradicnt-like algorithms for

dealing with symmetric indefinite systems of equations. The first of these, SYMMLQ, is

identical to the traditional conjugate-gradient method in the positive-definite case, and

25

is not of much interest in this context. The second, MINRES, is based on minimizing

the norm of the residual at each iteration. It produces different iterates than the CG

method, and has many properties of value to us here. It will be discussed in section 3.7.

Finally, we give here a description of a truncated-Newton method in algorithmic

form. The details of the methods used to iteratively solve the Newton equations and to

precondition the algorithm will be given later.

(3.2.1) Truncated-Newton Algorithm

TNI. Given x^k\ some approximation to x .

TN2. If x^ is a sufficiently accurate approximation to the minimum of

F, terminate the algorithm.

TN3. Approximately solve the Newton equations (2.2.3) using some

iterative algorithm with preconditioning M(fc). M(fc) is chosen with infor-

mation from some non-linear algorithm or from previous iterations (see

Chapter 5).

TN4. Using the search direction computed in step TN3, use the line

search algorithm (1.4.3) to compute a new point i(fc+1). Go to step TN2.

3.3 The Linear Conjugate-Gradient Algorithm

A well known technique for the solution of large systems of linear equations is

the linear conjugate-gradient method of Hestenes and Stiefel [1952]. This method can

be directly applied to the Newton equations (2.2.3). The linear conjugate-gradient

algorithm is particularly appropriate when matrix-vector products of the form G^v can

be computed even though the matrix G^ or its factorization cannot. The conjugate-

gradient algorithm is usually derived as a direct method, in the sense that, theoretically,

the solution is found after n iterations or less. However, in practice the algorithm behaves

more like an iterative method since it computes a sequence of improving estimates and

has the potential of converging in much more than n iterations. The finite termination

properties of the conjugate-gradient algorithm are based on orthogonality relations which

are not valid in finite precision arithmetic. It is possible to perform extra computations

in order to recover finite termination, but this is expensive both in terms of storage and

in terms of operation counts. For large problems, this is impractical. Recent work of

26

Parlett [1980] and others has attempted to overcome this difficulty through the use of

selective reorthogonalization.

Although most of the literature on this algorithm refers to the solution of the

equation Ax = b, it is felt that using this notation here would lead to unnecessary

confusion. In order to be consistent with the other parts of this thesis, we shall solve the

system of linear equations

Gp = b, (3.3.1)

where G is an n X n positive-definite matrix. We shall use {pq} to denote members of

an iterative sequence intended to solve (3.3.1). It will be assumed that all the operations

are performed in exact arithmetic.

The conjugate-gradient algorithm can be derived by finding iterates that minimize

the quadratic function Q(p) = \pTGp — bTp.

Let pq be the g-th approximation to the minimum of Q{x) and let v\,V2,..., vq

be q linearly independent vectors that span a subspace "Vq. The minimum of Q(x) may

be computed by minimizing Q[x) over an expanding sequence of linear manifolds that

eventually contains 1Stn. If V, denotes the matrix with columns vi,v2,...,vq then the

minimum of Q(x) over the manifold pq + Vq is given by the solution of the problem

min Qipa + Vqw).
west*

If pq+Vqw is substituted into the quadratic function we find that the optimal w minimizes

the function

where rq = VQ(pg) = Gpq — b. This quadratic function has a minimum at the point

—{VqGVq)~
lVqrq and consequently, the required minimum over the subspace is given

Vq+v=Pq-Vq{VT
qGVq)-

lVT
qrq.

Note that r,+1, the gradient of Q(p) at pq+i, is orthogonal to the columns of V, since

V*rq+l=VT(GPq+1-b)

= -VT
qGVq{VT

qGVq)-'V
T

qrq + VT
qrq

= 0.

The definition of pq+i äs a minimum over the manifold pq + "Vq has special significance

27

if each previous iterate pj is obtained as the minimum over py_i + Vy_i. In this case

rq will be orthogonal to all the columns of Vq except the last, and the minimum on the

subspace "V, is given by

Pq*+i = Pq-Vq{VT
qGVq)-*VT

qrq

= Pq + lVq{VT
qGVq)-

leq, (3.3.2)

where 7 = —rqvq and eq is the g-th column of the identity matrix.

Suppose that the columns of Vq are defined by the Lanczos recurrence relations

(Lanczos [1950]). In this case we start with some vector vv vr[vl = 1, and form

ßj+iVj+i = GVJ - otjVj - ßj-Vj-i, a, — vjGvjf (3.3.3)

where v0 = 0, and ßJ+i {ßj'+i > 0) is chosen so that ||vy+i||2 = 1. After the g-th step

GVq = VqTq + ßq+1vq+lel (3.3.4)

where

f a\ ßi

ßi a2 ßz

ßz "3
T =

ßq «« J

VfVq = Iqt and VTVq+l=0.

The process will be terminated at the first zero ßj, so that in general we assume that ßj

is nonzero for j — 1,2,..., q. In this case V^GVq = Tq and (3.3.2) becomes

Pq+i=Pq + lVqTq
leq

= Pq + lVq{L
T

q)-
xD-lL-xeq,

where Lq and Dq are the Cholesky factors of Tq. Since Lq has unit diagonal elements,

L~leq = eq. Consequently,

= p, + aqu„

(3.3.5)
9

quq,

28

where aq = —rqvq/dq and uq is given by the g-th column of the matrix

Paige and Saunders [1975] show that the columns of Uq can be computed from the

recurrence relations

«1 = Vl, Uq = Vq - IgUg-l,

where /, is the (q — l)-th sub-diagonal element of the lower bi-diagonal matrix Lq.

When the vector Vi used to start the Lanczos process is chosen as a multiple of the

right-hand-side vector b and when xi is zero, this algorithm is mathematically equivalent

to the Hestenes-Stiefel conjugate-gradient algorithm. The derivation here emphasizes the

fact that a whole class of conjugate-direction methods can be generated from different

choices for v%.

It is well known that in general, rounding error seriously impairs the performance of

Lanczos tri-diagonalization by causing a loss of orthogonality in the vectors {v}-}. This

implies that the matrices VqGVq will no longer be tri-diagonal and the solution p,+i.

over the subspace V, will be correspondingly inaccurate. The effects of this error are

noticably reduced if the starting vector vi is taken to be a multiple of b. The reason for

this is that, in the Paige-Saunders algorithm, each pq is algebraically of the form Vqy,

where Tqy = ßxe\. From (3.3.4) we have

GVqy = VqTqy + ßq+lvq+le
T

qy

to working precision, and consequently,

Gpq = ßxVqex + ßq+1vq+le^y

= b + ßq+1vq+leTy. (3.3.6)

This expression does not depend at all upon the orthogonality of the Lanczos vectors

and indicates that pq will be the solution of a problem with right-hand side that differs

from the true b by ßq+1vq+lejy, a quantity that will ultimately be sufficiently small.

Unfortunately, a relationship analogous to (3.3.6) does not hold for arbitrary vi.

In the light of these remarks, we shall always use the term Lanczos Iteration to refer

to the recurrence relations (3.3.3) with vi defined as a multiple of 6. Although this is

mathematically equivalent to the linear conjugate-gradient algorithm of Hcstenes and

29

Steifel, this derivation allows us to modify the algorithm in the case when the Hessian

matrix G is not positive definite.

3.4. Indefinite Systems

When the matrix G is indefinite, Paige and Saunders note that the conjugate-

gradient method is unstable and propose a modified Lanczos method based on the LQ

factorization of Tq rather than the Cholesky factorization. In the context of minimization,

however, even the exact solution of an indefinite system is of little practical value since

the resulting direction of search is likely to be a non-descent direction. As in the case of

modified-Newton methods for the factorization of G^k\ we can make better use of the

solution of a neighboring positive-definite system.

The proposed method is based on the following theorem. We shall assume that

the Lanczos iteration, when applied with exact arithmetic to a symmetric matrix G,

terminates at iteration s (s < n), i.e., ßa+i vanishes. As in the last section, we shall use

Tq and V, to denote the q X q and n X q matrices associated with the g-th stage of the

Lanczos iteration.

Theorem (3.4.1) Let Ea = diag(en,e22, • • • ,eaa) be a diagonal matrix with non-

negative entries and let Eq denote the q X q principal sub-matrix of Ea. If the matrix

Tq 4- Eq is positive definite with Cholesky factors Lq and Dq, the iteration

"re„ Pi = °> Pq+l =Pq + °qVqL,

where oq = —v^rq/dq, solves the linear system,

\G + VaE.V?)p = b.

Proof Let G denote the matrix G + VaEaV^. Using the orthogonality of the Lanczos

vectors

VT
qGVq = VT

qGVq + Eq

= Tq + Eq

= LqDqLT
q. (3.4.2)

We can apply the ideas of Section 3.3 to generate the sequence [p-] defined by the

30

recurrence relations
f 9 = Gpq-b

(3-4.3)
h+r=Pq-Vq{VT

qGVq)-"VT
qrq,

that will solve the linear system Gp = b.

Substituting the expression (3.4.2) for V\"GVq in (3.3.5) and using a similar analysis

to that used to obtain (7) we find

Pq+i =Pq + <rqVqLq
Teq,

where aq = -v^fq/dq. The scalar vq
rrq is computed from r, using

<f, = <(Gp,-6)

= vT
q{GVq - 6) + v^VqEqV

T
qVq

Since p is in the span of {v\,..., u,_i}, and Vq is an orthogonal matrix, the second term

on the right-hand side vanishes. This proves the theorem. |

Corollary (3.4.4) The vector p obtained from the recurrence relations defined in

Theorem 1 satisfies the positive-definite system

■ [G + VEVT)p = b,

where ||^£Fr|| =

Proof If s is equal to n the corollary follows trivially. If s < n then V will be

the matrix [V, V), where V is the orthogonal complement of Va. The remaining n - s

diagonal elements of E are arbitrary and may be chosen so that A + VEVT is positive

definite. |

The modified Lanczos method may be applied directly to the Newton equations

(2.2.3). When exact arithmetic is used and the Lanczos iteration is continued until ßq+l

is zero (i.e., q steps are computed), the nonlinear algorithm is a modified Newton method

with a positive-definite approximate Hessian

G<*>+ /?<*>,

where flW is the matrix VqEqV* Note that, unlike the modification produced by the

31

direct application of the modified Cholesky factorization, flW is not a diagonal matrix.

The orthogonality of the Lanczos vectors implies that

\\VqEqVT\\ = ||jg|.

Consequently, when the diagonal modification to Tq is small, the modification to G^

will be small also.

The truncated Newton method of Dembo and Steihaug [1980] "solves" (2.2.3) by

performing a limited number of iterations of the linear conjugate-gradient method.

The iterations are terminated ("truncated") before the system is solved exactly. The

final iterate of the truncated sequence is then taken as an approximate solution of

(2.2.3). If a single linear iteration is used, pW will be the steepest-descent direction

—gW; if the sequence is not truncated, p^ will be the solution of (2.2.3). Thus, the

algorithm computes a vector that interpolates between the steepest-descent direction and

the Newton direction.

Dembo and Steihaug showed that, if G^ is positive definite and the initial iterate

of the linear conjugate-gradient scheme is the steepest-descent direction — g(k>, all suc-

ceeding linear iterates will be directions of descent with respect to F[x).

When G^ is not guaranteed to be positive definite, pW may not be a descent

direction. We propose that the modified Lanczos algorithm be used to compute the

direction of search. The following theorem indicates that the direction of search obtained

by terminating the modified Lanczos scheme will always be a direction of descent,

irrespective of the definiteness of G^k\

Theorem (3.4.5) Let {pq} denote the sequence of iterates computed by the modified

Lanczos algorithm with po equal to the zero vector, and assume that g(k> 7^ 0. Then

9{k)TPq < 0 f°r all q > 0.

Proof When po *1S zero, pq (q > 0) is the solution of the minimization problem

min lpJ{GW + nW)p + gWTp

where fi^ is some modification to G^ chosen so that G^ + f)W \s positive definite.

Thus

p. = -*Vi(^-i(c(fe) + ß(fc,)Vi)~ Vi^-
32

Direct pre-multiplication by gW gives

9{k)Tpq = -lfik)TVr-l{Vl_1{GW +nW)Vq_iy
1VT_lgW < 0,

since by construction, Vq_t(G^ + 0^)Vq_x is positive definite. |

3.5. Computing a Modified Factorizaton of a Tridiagonal Matrix

At the first stage of the Lanczos process we need to find the Cholesky factorization

of the 1 X 1 "matrix" given by

Tt = (ai).

If A is not positive definite, ai may be negative or zero, and it is replaced by

5i = max{ai,6},

where 6 is a pre-assigned small positive constant. This is an allowable "diagonal"

modification to T\ since

äi = an + pi,

where pi = max {0,6 — a>i}. The introduction of the constant S is necessary to bound

the factorization away from singularity. Usually 6 will be a multiple of the relative

machine precision.

At the second stage of the algorithm we need the modified factorization of the matrix

/öl fa \
(3.5.1)

Let the Cholesky factors of this matrix be written as

(1 ° Ydl ° V1 h]
V h 1 A 0 d2 A 0 1)

Straightforward application of the Cholesky factorization to (3.5.1) gives d\ = äi, d2 =

m&x{6,<f>}, and l2 = ß2/öci, where <$> = a2 — ß2/ön- If <f> is negative, the matrix is

indefinite and a diagonal correction must be made in order to ensure sufficient positive

definiteness. The smallest modification to the (2, 2) element of (3.5.1) that maintains

positive definiteness results from redefining d2 as 6. This modification adds the quantity

—<f> + 6 to the second diagonal element of (3.5.1). Unfortunately, this algorithm has a

33

serious disadvantage, as the following example will illustrate.

Consider the Cholesky factorization of the matrix

-c :> (3.5.2)

In this case, <}> is the large negative quantity 1 — 1/6 and the diagonal d2 is set to 6. This

gives the factorization

U IAO Jlo Jvi 6 + U'
Note that, although we have made the smallest allowable modification to d2, we have

produced a very large diagonal correction and the modified matrix is in no way "close"

to the original. This has occurred because the lower-triangular element has been allowed

to become large.

This problem does not arise when using the Gill-Murray modified Cholesky fac-

torization (Gill and Murray [1974a]) since the diagonals are adjusted so as to give lower-

triangular elements that are bounded in magnitude by an a priori bound. However, in

order to compute this bound it is necessary to determine an accurate bound on ||G||

which may not be possible or convenient if G is large and not stored explicitly.

An alternative to the Gill-Murray factorization which is, nevertheless, similar in

principle requires the computation of the factorization

pi ß*\ f<n °_(1 °\(dl °\(1 M
\ßz a2y VO p2J \l2 1 A 0 d2J\0 1)'

so that the quantity oi + p2 is minimized. (We use a different notation for the elements

of the diagonal modification and the diagonal factor because p2 and d2 may be modified

again at the next stage of the factorization.) Thus if we define the quantity

r = max {<j>, 6},

we need to solve the problem

min o\ + p2

subject to T = a2 + p2 — ßz/i&i + °\)

o\ > 0, p2> 0.

34

If <p > 6, ffi = p2 = 0. Otherwise T = 8 and we compute,

at = \ß2\-äu and />2 = 6 - «2 + |/?a|, (3.5.3)

which are the optimal values of o\ and p2 ignoring the non-negativity constraints. If

either correction is negative we use

<r1 = 0 and p2 = 6 — a2 + ßl/ät = 6 — <p, (3.5.4)

or

a\ =^2/(a2-*)-öi. and />2 = °> (3.5.5)

choosing the sensible pair that minimizes o± + p2. Since (j> < 6, at least (3.5.4) must be

feasible.

When this modified Cholesky factorization is used on the matrix (3.5.2), the factors

are given by

ll lAo JU lj ll 1 + 6)'
which is suitably "close" to the original matrix.

The first column of the Cholesky factorization is unaffected by subsequent iterations

and consequently l2 is the required sub-diagonal element of L with

en = pi +ai.

The next stage of the reduction involves the matrix

/Ö2 ß3\

where a2 = a2 + p2 and by construction, a2 > 6. This matrix is identical in structure

to (3.5.1) and so the process can be continued to find the modified factorization of T2,

T3, ... etc.

Two advantages of the Gill-Murray modified Cholesky factorization are that (a)

it is possible to bound the diagonal modification, and (b) it is possible to compute a

direction of negative curvature when gW = Q and G^ is indefinite (see section 2.2).

The implementation of the algorithm as described in their work requires accurate a priori

bounds on the elements of the matrix G^. In our case, the tridiagonal matrix Tq is being

35

factored as it is generated, and the matrix G^ may not be available. It is still possible,

though, to bound the norm of the modification and to compute directions of negative

curvature when the gradient is zero.

Theorem (3.5.6) Let T be a symmetric tridiagonal matrix, with principal i X i

submatrix T,. Assume that a modified Cholesky factorization

Ti + Ei = LiDiLj

is computed using the algorithm described above. If

7f = maxflayl}

where {ay} and {ßj} are the diagonal and subdiagonal elements of T, respectively, and

if 6 is a positive tolerance for zero, then

\\Ei\\2 < i[S + H + Si]-

Proof (by induction) Initially, T\ = (c*i). If <*i > 6, then E\ = (0); otherwise,

E\ = (6 — a\). In either case, \\Ei\\ < £+,|ai| = 1 • [6 + 71 + Si]- (The norm used is the

2-norm.)

Assume that \\Ei\\ < i[S + 7,- + Si]- If ai = Pi+i = 0, then no modification is

necessary, \\Ei+1\\ = \\Ei\\, and hence ||£l+i|| < (»'+ l)[S + 7,+i + Si+i]-

Otherwise, r = 6 and we compute CT, and pi+\ from (3.5.3), (3.5.4), or (3.5.5). When

(3.5.3) is used,

||£i+i||<||£,-|| + « + 7.-+i + ft+i,

and the result follows. If (3.5.3) is infeasible, we use either

Oi + Pi+i = ßi+i/äi - ät+i = ii>

or

Oi + Pi+i = ^+i/ä»+i - ät- = 0,

where ät+i = al+i — 6. There are three cases:

(i) max{ä,-,ät+i} < \ßi+i\: In this case, |/3,+i| - ät and |/3,+i| - «»+1

are both positive, so that (3.5.3) would have been feasible.

36

. (ii) |/3,+i| < a,: First, ip < \ßi+i\ — ä»+i. Also, because (3.5.4) is

feasible, we can conclude that ij) > 0.

(Hi) |A+i| < <*i+i- First, 0 < |/3,'+i| — ä^. Because a,- > 0 (by

construction) and äi+i > 0 (by assumption), then 0 = (äi/äi+i)rp > 0.

We are trying to minimize <7t- + />t+i = min{0, ip}, subject to the feasibility constraints.

From the case-by-case analysis above, we can conclude that min{0, if)} < max{|/3,+i| —

öti, \ßi+i\ - äi+i}, and hence

pt+i||<||^|| + tf + 7.-+i + «i+i.

This implies that ||i^+i|| < [i+ 1)[6 + 7,+j + ft+i], and the result is proved.|

In the above discussion, it was assumed that the modifications to the diagonal

elements of the 2X2 matrices were both positive. When factoring a tridiagonal matrix,

a diagonal element might be modified twice, and in this case it might be possible to allow

one of these modifications to be negative. This would not affect the a priori bound on E

derived above. For this reason, we have not examined this possibility further.

3.6. Computing a Direction of Negative Curvature

The procedure for the computation of the direction of search will break down if

\\g\\ is zero. If G is positive definite, then a solution has been determined. It remains,

however, to confirm that G is indeed positive definite. Moreover, if G is indefinite, further

progress can be made by moving along a direction of negative curvature.

Suppose that \\g\\ is small. We wish to determine if G is indefinite, and if so, compute

p such that pTGp < 0. To do this, we choose vi randomly, ||t>i|| = 1, as the initial vector

for the Lanczos process. The Lanczos iteration

VJGVj = Ti, T^LjDjLf

is performed as long as Tj is positive semi-definite. (Parlett [1980] reports that good

approximations to the extreme eigenvalues can be obtained in 2n« iterations; if G is

indefinite, one of the extreme eigenvalues will be negative.) Note that, because we are

trying to determine if G is indefinite, the tolerance S should be set to zero.

Assume that Tq, q < 2nä, is the last positive semi-definite matrix that occurs. Also,

37

suppose for the moment that ßq+i is non-zero. Then T,+i = Lq+iDq+iLq+i) where

where bT
+± = (0,.. .,0,ßq+i). Note that only the last diagonal element of Dq can be

zero. In order to determine a direction of negative curvature, we perform an orthogonal

spectral decomposition of l ß q
+i J^x J;

= i,
\ß,+ i aq+i) \0 -\q+iJ V921 922/

with X9+i > 0. This is possible because Tq+i has exactly one negative eigenvalue. Let

p = u,+ i, where

—r - (I 0\
Uq+i = («i | • • • | uq+i) = Vq+iLq+1, Lq+i — Lq+A o I;

«9+1 = 9i2«g + Q22vq+i- This is nearly the same as the formula used to compute

the linear conjugate-gradient search direction, so that no additional vector storage

is required to implement this idea. Then, if eq+l = (0, ...,0,1) and D,+ i =

diag{di,..., dq-\, \q, — X,+ i},

pTGp = e^+lU^+lGUq+ieq+i

= eq
r+iL,q+iVq

r
+iGVq+iLq+leq+l

„ -t „ w — T* — r
= e^+1Lg+1[Lg+iD,+ iLg+jL9+1e,+i

= -\,+i < 0.

Thus p is a direction of negative curvature. It should be noted that, since the Lanczos

algorithm seeks out the most negative eigenvalue of G, the direction p computed in this

way ought to be an excellent direction of negative curvature, i.e. prGp/||p|| will be close

to its minimum value.

Suppose now that ßq+i = 0. If Tq is positive definite, and provided our initial

random vector docs not lie wholly in the space spanned by the eigenvectors corresponding

to positive eigenvalues, then G is positive definite and we are at a local minimum of the

objective function F. However, if the initial vector does lie in the positive eigenspace, no

such conclusion can be made. To guarantee the indefiniteness of G, we require a more

complex procedure.

We will carry out the Lanczos procedure using a series of initial vectors. The first,

38

v\, will be chosen randomly as above. If the Lanczos algorithm terminates at iteration

q, with q < n, and Tq is positive definite, then we choose another initial vector v\

orthogonal to {v},Gv},...} and run the Lanczos algorithm again. We continue in this

way until either we encounter an indefinite Tq, or until {v\, Gv\,..., v\, Gv\,...} spans

Stn. In the latter case, we can assert that G is positive definite.

This procedure is impractical for large problems. In the worst case, it will take a full

n steps to determine whether G is indefinite. Suppose that G has one negative eigenvalue.

Also, let {v\} be an orthogonal set of eigenvectors for G, with v" corresponding to the

negative eigenvalue. Then the Lanczos algorithm will converge in one iteration for each

v\, and all n starting vectors will have to be used. When n is large, this is unsuitably

expensive.

If G is indefinite then, due to the influence of rounding errors, it is highly unlikely

that the Lanczos algorithm will terminate without discovering the indefiniteness in G.

Even if the initial vector vi contains no component in the negative eigenspace, any

rounding error would almost certainly introduce one. This would then allow a negative

eigenvalue to develop in Tq as desired. Thus, the worst case behavior described above is

unlikely to occur in practice. This justifies using a single starting vector when seeking a

direction of negative curvature.

If Tq is only positive semi-definite, i.e. dq=0, then it is not possible to determine

a direction of negative curvature for the quadratic approximation. If we set p = uq,

the q-th linear conjugate-gradient search direction, then pTGp = 0 using an argument

similar to that above. Such a p may be a direction of negative curvature for F, even

though it is not for the quadratic subproblem. This would depend on the higher-order

derivatives of F.

3.7. Minimum Residual Methods

As was seen above, the preconditioned Lanczos method generates a tridiagonal

matrix as a projection of the coefficient matrix in (3.3.1). In the previous sections, we

used this tridiagonal matrix to minimize a quadratic function related to our original

system of equations. This tridiagonal matrix can also be used to implicitly solve the

normal equations

GTGP = GTb.

39

This idea is the basis of the minimum residual algorithm MINRES of Paige and Saunders

{1975].

When minimizing the quadratic function, we formed an LDLT factorization of the

tridiagonal matrix T. In this context, it is more appropriate to factor Tq (or, to be more

exact, Tq + Eq) as

Tq = LqQq, QT
qQq=I, (3.7.1)

with Xq lower triangular. The bar is used to indicate that Lq differs from the q X q

leading part of L,+i in the {q, q) element only. The details of this factorization can be

found in the Paige and Saunders paper.

If we carry out the orthogonal factorization, we obtain that

VT
qG

2Vq = Tq + ß2
q+1eqeT= LqL

T
q + ß\+xeqeT

q = LqL
T

q, (3.7.2)

where Lq is the leading q by q part of L,+i. If we project the normal equations onto the

space spanned by the columns of the matrix Vq, we obtain

VT
qG

2Vqzq = V^Gb, p, = Vqzq.

The right-hand side of this system can be written as

Using (3.7.1) and (3.7.2), we obtain the following system of equations for zq:

LqL
T

qzq = ß{LqQqei. (3.7.3)

But we can write

Z, = LqDq, Dq = diag(l, 1,..., cq),

and while Lq is nonsingular, (3.7.3) gives

Lqzq = ß!DqQqei == (n,..., T,)
T
= tq,

T\=ß\Cl, T, = /?iSi«2-"«t-lCt, * = 2,...,9,
(3.7.4)

so there is minimal error in computing Lquq. Clearly zq cannot be found until the

algorithm is completed, but it is not really needed; instead we form

Nq = [m,...,n,] = VqLq

40

-T

column by column, and then

*? = V, = VqL-TL*z, = Nqtq,

where tq is developed in (3.7.2), and the superscript R shows that this is the vector which

gives the minimum residual. It can be seen that this formula does not require the storage

of the matrix N; all that is needed is its final column.

Because we will wish to terminate this algorithm based on the norm of the residual,

it is important that this quantity can be computed with little effort and without requiring

excess storage. It follows from the results of Paige and Saunders that

||rf|k = |/3i8is2---8,|,

which satisfies our requirements, and which shows clearly how the residual norm decreases

each step. Here, \\-\\M refers to the M-norm of a vector^ where M is the preconditioning

matrix for the Lanczos algorithm (see section 3.8 below).

3.8. Preconditioning the Lanczos Algorithm

When exact arithmetic is used throughout, the number of iterations required to solve

a linear system Gp — b using the conjugate-gradient method or the MINRES algorithm

is equal to the number of distinct eigenvalues of G (see, for example, Luenberger [1973],

pp. 176-178). Therefore, the performance should be significantly improved when the

original system is replaced by an equivalent system in which the matrix has many unit

eigenvalues. The purpose of preconditioning is to construct a transformation to have this

effect.

Let M be a symmetric, positive-definite matrix. The solution of Gp = b can be

found by solving the system

M-*GM~*y = M~H,

and forming p = M~*y. Let R denote the matrix M~%GM~*; we have M~?RM$ =

M-1G and therefore R is similar to M~lG and has the same eigenvalues. The idea is

to choose M so that as many of the eigenvalues of M~lG as possible are close to unity.

This is roughly equivalent to choosing M so that the condition number of M~XG is as

small as possible; the matrix M is known as the preconditioning matrix.

41

Given a preconditioning matrix M, we can apply the Lanczos algorithm to the

transformed system without forming R and without the need to find the square root

of the matrix M. In practice, M will often not be explicitly available. It will only

be available as an operator, and all that will be possible is to solve systems of linear

equations with coefficient matrix M.

The recurrence relations analogous to (3.3.3) for the transformed system are

ßj+ivj+i = M~iGvi-ajVj--ßjVi-i, a3 = vJGvj,

where t>o and v\ are chosen as before. Notice, however, that for the preconditioned

algorithm the vectors Vi are normalized so that ||vt||Af = 1- After the g-th step we have

GVq = MVqTq + ßq+lMvq+le
T

q.

Note that the matrices M, Tq, and V, satisfy the relations

VjMVq = Iq) and V*GVq = Tq.

This preconditioned Lanczos algorithm allows us to solve the system of equations (3.3.1)

in the same way as in sections 3.3 or 3.7: The crucial fact in the derivation in those

sections is that the matrix Vq transforms the matrix G to tridiagonal form. This is still

true for the preconditioned algorithm.

We shall discuss the choice of preconditioning matrix in chapter 5. We shall be

particularly interested in using a matrix M that is an approximation to the inverse of G.

This matrix can be obtained using information from a nonlinear conjugate-gradient-type

method together with information from previous linear subiterations.

42

4 Terminating the Linear Algorithm

4.1. Introduction

In order to fully define the simplest form of a truncated-Newton algorithm, all that

remains is to state how to terminate the linear algorithm. The fundamental results in

this area were proved by Dembo, Eisenstadt and Steihaug [1980]. They provide very

useful guidelines for developing practical convergence criteria.

In section 4.2, the results of Dembo et al. will be described from the point of

view of function minimization (they were originally stated in the context of solving

systems of non-linear equations)'. Because these results are stated in terms of the 2-norm

of the residual in (2.2.3), they are not directly applicable or even natural when used

in conjunction with methods based on minimizing a quadratic function. More useful

extensions of their results will be proved in section 4.3. In section 4.4, practical stopping

criteria for the linear algorithm will be discussed. Finally, in section 4.5, truncated-

Newton algorithms based on a trust-region approach will be derived.

4.2. Termination Based on ||r^||2

Actually, the results in this section involve the relative residual

rW/\\gW\\, (4.2.1)

where

r<*> = G<*V*} + ffW

The relative residual in (4.2.1) is used because it is scale free, i.e. multiplying the objective

function F by a constant does not affect its value. Note that since \\g^\\ -♦ 0 and

l|p(fc)|| -»• 0, then ||pW - (-gw)|| -*■ 0. Since -gW would be an exceedingly poor

approximation to pW to use within the algorithm, clearly it is necessary to scale in the

manner described.

. All the results of this section will be of the following form: the linear iteration will

be truncated if the current estimate pW of the search direction guarantees that

||r(*)||
jj^|<«k, . fc = 0,l,...l (4.2.2)

43

where {<£*} is some "forcing sequence". The algorithm is then completely defined given

that the sequence {<f>k} has been specified.

Before proceeding with the main result, we require the following definition.

Definition (4.2.3) G(x) is Holder continuous at x* if there exist constants p € (0,1]

and L so that for all y in a neighborhood of x

\\G(y)-G{x*)\\<L\\y-x*\\".

We are now in a position to state

Theorem (4.2.4) Assume that F : SRn -»■ Jft is a real-valued function such that

1) There exists a local minimum x* of F.

2) F is twice continuously differentiable in a neighborhood of x

3) G{x) is nonsingular (and hence positive definite)

and that the truncated-Newton sequence {x^} converges to x . Then

i) if limk-,.oo0fc = 0, the convergence rate of {r^} and {x^} will be

superlinear.

In addition, if G(x) is Holder continuous at x with exponent p 6 (0,1], then for some

c > 0,

ii) if 4>k < clls^llp> the sequence {x^} converges with Q-order (1 + p);

and

iii) if {<f>k} converges to 0 with R-order (1 + p), then {x^} converges to

x* with R-order (1 + p).|

The proofs of these results can be found in Dembo et al. [1980].

4.3. Alternative Assessment Criteria

In order to approximately solve the system of linear equations (2.2.3), some variant of

the conjugate-gradient algorithm is used. Although Theorem (4.2.4) is useful in indicating

when to stop the conjugate-gradient iteration, it is based on ||rg|| a quantity which does

not decrease monotonically as the algorithm progresses (the subscript q refers to the

linear conjugate-gradient iteration). The algorithm is based upon the minimization of

the quadratic function

Q{p) = \P
TGp + pTg.

44

It would be preferable to stop the algorithm based on the value of this quadratic function,

since it is a closer measure of how the conjugate-gradient algorithm is converging. Ideally,

we would like to measure convergence in terms of the quantity

lIP-PlI
IMI '

where p is the minimizing point for the quadratic function Q{p). Since this is unavailable

during the computation, this is not possible. However, a simple substitution shows that

HP-PIIC

1Mb-
Q(p)-Q(p)

Q(p)

In this section we will show how to use this relation to derive a practical convergence

criterion. First of all, two lemmas arc required.

Lemma (4.3.1) If G is symmetric and positive-definite then

yTG2y < \\G\\yTGy.

Proof We can assume, without loss of generality, that G = diag{X»}. Then,

yTG*y = Y,vW
S: / j Vj "i^max

— Amax / ^ J/t- \i

= \\G\\yTGy.M

Lemma (4.3.2) If G is symmetric and positive-definite then

yTGy < HG-^ly'G'y.l

The proof of this lemma is almost identical to the previous proof and is therefore omitted.

We now move on to our main result.

Theorem (4.3.3) Suppose Q(p) = %PTGp + pTg, where G is symmetric and positive-

definite. Let p denote the point that minimizes Q. Then, for any p,

' \\Gp + g*<2\\G\\-(Q(p)-Q{p))

[Q(p)-Q(p))<i\\G-1\\'\\Gp + gf.

Proof We will prove here the first result, which relies only on Lemma (4.3.1) above.

45

The proof of the second result (which relies on Lemma (4.3.2)) is almost identical.

\\Gp + g\\2 = {Gp + g)T(Gp + g)

= (Gp-Gp)T(Gp-Gp)

= {p-p)G2{p-p)

<\\G\\(pTGp-2pTGp + pTGp)

= \\G\\({pTGp+2pTg)-pTg)

= 2\\G\\(Q(P)-Q(p)).i

The significance of this result is that we can now rewrite Theorem (4.2.4) with ||r,||

replaced by [Q{pq) — Q(p))1^2- One major advantage of using this quantity is that it

decreases monotonically during the linear conjugate-gradient iteration.

Clearly, since p is unknown during an iteration, we cannot make direct use of this

quantity within an algorithm. We require a convergence test which only involves com-

putable quantities, and at the same time maintains a superlinear convergence rate in the

outer algorithm. To this end, we will now examine the behavior of the linear conjugate-

gradient algorithm more closely. Because the performance of the outer algorithm is now

of interest, the superscript ^ is now included in the formulas.

Hestenes [1980] has shown (p. 44) that

Q{k)(Pq+i) - Q{k\p) < K QW(p,) - QW(p)

where K = (ff+™)2 and m, M are the extreme eigenvalues of G^. Hence,

^(Q(fc)(p,+i) - Qw®) < Qw(Pq) - Qw(Pq+i)

. <Q{k)(pq)-Q
w(p)-

From this we conclude that it is possible to achieve superlinear convergence by insuring

that

QW(pq)-Q
W(pq+x)\ =o(||gW||). (4.3.4)

The significance of this result is that all the quantities involved can be computed during

the course of the linear conjugate-gradient iteration. Thus, this is a practical way of

being able to guarantee superlinear convergence. It is also attractive because it is based

on the successive values of the quadratic function minimized by the linear CG algorithm,

and not on successive values of the residual. Unfortunately, like the norm of the residual,

it does not decrease monotonically during the iteration.

46

When using the linear conjugate-gradient algorithm to solve Gp = —g, we clearly

have that ||p0|| = ||-ff|| and that ||Poo|| = H-G^gH < ||Gf—*|| • \\g\\. This implies that

we can rescale (4.3.4) and obtain the following two equivalent convergence tests:

lQW(pg) - Q(*Wi)]* = o(|Q(fc)(pi)|±) (4-3.5)

and

\Q{k)(p,)-QW(p,+i)]>=o(\QW(pq+l)\$). (4.3.6)

These measure the current reduction in the quadratic function against its initial value

and its latest value, respectively.

There is one further extension of the convergence results which is of interest when

truncated-Newton methods are used in conjunction with the linear algorithm MINRES.

This concerns the use of norms which vary from iteration to iteration.

When MINRES is used with preconditioning (see Chapter 5 for details) the progress

of the linear iteration is assessed using

II^IIMO)' (]

where ||-||M is defined by

HvIlL = VTMy

and {M('} is a sequence of positive-definite matrices. From the way in which the

MINRES algorithm is derived, it is clear that (4.3.7) has the desired monotonicity

property which the original convergence criterion and (4.3.4) lack.

We shall assume that there exists a uniform finite upper bound on the eigenvalues

of {M(fc)}. That is, there exists Xmax such that

X(M<*>) < Xm„ < oo, VA, (4.3.8)

where \[M^k\) is any eigenvalue of the matrix M^kK From the way in which the sequence

{M^} is constructed, it will follow that there is a uniform positive lower bound as well.

Thus, there exists Xm;n such that

0 < Xmin < X(AfW). (4.3.9)

Using (4.3.8) and (4.3.9) it is clear that

xiiJMI < \\y\\M(») < xJLlMI, VA

47

and hence that

A^yilrWH ||rW||MW Amaxyi|rW||

From this it follows that the ratio (4.3.7) can be used to terminate the linear iteration.

4.4. Practical Forcing Sequences

The forcing sequence in the convergence test can be chosen in accordance with

Theorem (4.2.4). This theorem shows how to obtain linear, superlinear, or quadratic

convergence by appropriately defining <j>k-

If we select 0<^jt = c<lorO<c<^jt<d<l, then the rate of convergence

will be linear. If (j>k > 1, then p^ = 0 is a valid search direction and no step is made;

hence we must choose <j>k < 1. The reason for choosing <j>k < 1 is to insure that at least

one linear iteration will be performed and that a direction other than the steepest-descent

direction will be selected if possible. When a preconditioning strategy is employed (see

Chapter 5), this condition could be relaxed.

For superlinear convergence, we must have that <f>k —*■ 0 as k —► oo. Dembo et al.

[1980] have suggested using

<f>k = 1/*. (4.4.1)

This sequence converges to zero quite slowly, so that the convergence test for the linear

iteration is not overly stringent.

Quadratic convergence can be attained if

<t>k < \\g{k)\\. (4.4.2)

Away from the solution, ||flr^fc)|| will often be greater than one, so that setting <f>k = \\g^\\

may not lead to convergence. This suggests combining (4.4.1) and (4.4.2) to obtain

^ = minjl/fc,||<7<fc>||j (4.4.3)

as a forcing sequence. Hereafter, we will refer to (4.4.3) as the "standard" forcing

sequence.

It may be desirable or necessary to limit the number of linear iterations allowed

during each outer iteration. Because the linear inner algorithm converges at a linear

48

rate, i.e.

Qq+i-Q* <K[Qq-Q*],

then setting an upper bound of L linear iterations leads to a linear rate of convergence

for the total algorithm.

Numerical tests of various forcing sequences are conducted in Chapter 7.

4.5. Trust-Region Methods

The quadratic approximation (2.2.2) to the objective function is clearly not valid for

all values of p. Up until this point, a line search algorithm has been used to monitor the

effectiveness of the approximation and to correct for its deficiencies. Another approach

to this problem is to use trust-region methods.

Trust-region methods, like line-search methods, are concerned with minimizing the

quadratic approximation (2.2.2). But unlike line search methods, a constraint is added

to the subproblem which involves an estimate of the size of the region where (2.2.2)

adequately predicts the decrease in value of the objective function F. In exact terms,

then, we seek to solve

min Q{k\p) = min F(fc) + g{k)Tp + ±pTGwp (4.5.1)
p p

subject to

IHI<*(fc). (4-5.2)

In order to obtain a solution to this problem, the constraint is usually rewritten as

iPTP ^ i(^*^)2- This transforms (4.5.1) and (4.5.2) into a convex programming problem.

The global solution is obtained by finding p and X such that

gW + Gwp+\p = 0

\prp - tf W < 0

x(iP
rP-i^)) = o (4'M)-

X > 0.

The problem (4.5.3) is usually solved by computing some estimate of the Lagrange

multiplier X and solving the system of equations

(GW + X/)pW = -ff«. (4.5.4)

49

A check is then made to insure that the constraint (4.5.2) is satisfied. If not, a new X is

computed and (4.5.4) is employed once again.

The final step in a trust region iteration involves computing x'fc+1' and 6^k+1\ This

step is usually based on the value of p^k\ the ratio between the actual function decrease

and the predicted decrease:

(fc)= F(*>-F(s(*> + P(*>)
p F(k) _ QW(x(fc) + pW) • 1i"t'°'

Generally, the larger the value of p^k\ the more adequately the constrained subproblem

(4.5.1), (4.5.2) indicates a decrease in the objective function. Thus, if pW \s large, a

step is made to the new point x(fc+1) = x^ + p(kh If />(fc) is especially large, the trust

region parameter 6^ will be increased, indicating greater confidence in the quadratic

approximation. On the other hand, if pW is small, no step will be made (i.e. x(fc+1) =

x(fc)) and 6^ will be decreased.

The above is intended as a general outline of trust region methods. More detailed

information as well as exact computational formulas can be found, for example, in Vardi

[1980] or Hebden [1973].

When the Newton equations (2.2.3) are being solved iteratively, repeated solution

of (4.5.4) is impractical. Steihaug [1980] has shown that use of (4.5.4) can be avoided

if the constraint (4.5.2) is used to terminate the linear conjugate-gradient algorithm.

Steihaug's work was done in the context of truncated quasi-Newton methods (similar

to truncated-Newton methods, except that an approximate solution is obtained for the

quasi-Newton equations (2.3.3) rather than the Newton equations (2.2.3)), but his ideas

are immediately applicable here.

At each iteration of the linear conjugate-gradient algorithm, Steihaug suggests

monitoring the length of ||p,||. This leads to the following formulas and tests:

1- Pq+1 = Pq + <*,«,

2. If ||p,+i|| < 6^ then continue with the algorithm.

3. Otherwise compute T > 0 such that ||p, + T«,|| = S^k\ set pW =

pq + TU,, and terminate.

Steihaug has managed to show that the resulting algorithm is globally convergent, and

is able to prove theorems comparable to (4.2.4) on the actual rates of convergence for

various forcing sequences.

50

Little computational experience has been reported for truncated-Newton algorithms

based on trust-region strategies. Although they show obvious promise, they lie outside

the scope of this thesis, and will not be considered further. Much of the work used in

designing linesearch-type algorithms is directly applicable to the trust region approach.

51

5 Preconditioning

5.1. Introduction

For every numerical algorithm there is an ideal problem. For Newton's method,

the ideal problem is a quadratic function. For the quasi-Newton and conjugate-gradient

methods, the ideal problem is a quadratic function with Hessian matrix equal to the

identity. More generally, we often think of the class of problems which the algorithm

solves well. For Newton's method, this is the set of functions which are "nearly"

quadratic. For quasi-Newton and conjugate-gradient methods, it is the set of functions

whose Hessians have clustered eigenvalues.

Because most problems are not ideal for an algorithm, it is important to have

alternative techniques of modifying the initial problem (without altering its solution)

so that it is easier to solve. The general idea is to make the given problem "closer" to

the ideal problem. This type of technique is called preconditioning.

Preconditioning is such a powerful and general idea that there exist preconditioned

versions of almost every known numerical algorithm, both direct and iterative. Direct

algorithms often use preconditioning to reduce the error in the computed solution. One

common example of this is the use of column scaling in Gaussian elimination (see, for

example, Wilkinson [1965], chapter IV). Iterative methods generally use preconditioning

to speed up the rate of convergence (although they may also be concerned with the

condition of the problem). One of the best-known and best-understood examples of this is

the generalized (i.e. preconditioned) linear conjugate-gradient algorithm (Concus, Golub,

and O'Leary [1976]). A brief description of preconditioning for the linear-conjugate

gradient algorithm can be found in section 3.8.

To give some idea of the versatility of this concept, it is possible to consider Newton,

quasi-Newton, and conjugate-gradient algorithms as preconditioned steepest-descent al-

gorithms, with the preconditioning being generated as the algorithm proceeds and being

modified at each iteration.

In large problems where it is expensive to compute information, it is important to

make as much use as possible of every computed quantity. This generally takes the form

of using current information to precondition future iterations.

With truncated-Newton methods, there are two algorithms to be concerned with.

52

First of all, there is the outer nonlinear iteration. In the basic method, this is just the

steepest-descent method. This could be replaced by a conjugate-gradient or a limited-

memory quasi-Newton method (using Newton's method would defeat the whole purpose).

This idea will be discussed in Section 5.2. During the linear algorithm, matrix-vector

products involving the current Hessian matrix are computed. It would be desirable to

use these to precondition future non-linear and linear iterations. This is the subject of

Sections 3 through 6.

We believe that the range of problems for which a truncated-Newton method will

be successful will be extended considerably only when a good direction can be produced

in a small number of linear conjugate-gradient iterations, and to this end the use of

preconditioning is essential.

5.2. Preconditioning with a Non-Linear Algorithm

When using a preconditioned modified Lanczos algorithm to approximately solve the

Newton equations (2.2.3), at each iteration it is necessary to solve a system of equations

Mz = r

involving the preconditioning matrix M. Most non-linear optimization algorithms can

be viewed as computing a search direction by solving, possibly implicitly, a system of

linear equations

Bp = -9,

for some matrix B. Thus, by applying the formulas for the non-linear method to the

vector r, it is possible to implicitly define a matrix M which can then be used as a

preconditioning matrix in the linear algorithm.

Setting M = I, i.e. using an unpreconditioned algorithm, corresponds to the

steepest-descent method. Another possible preconditioning matrix for this system is

an r-step limited-memory quasi-Newton matrix //. As we approach the solution, and F

looks more and more like a quadratic function, a small number of quasi-Newton steps can

often produce a search direction which is much superior to the steepest-descent direction

or to a traditional non-linear conjugate-gradient direction (see Gill and Murray [1979]).

Using a quasi-Newton preconditioning, the vector —HgW will be the first non-trivial

member of the sequence {p,} and this direction is far more likely to give a good reduction

53

in the function than -g(kh Consequently, even if the linear conjugate-gradient algorithm

were terminated immediately, a reasonable search direction would have been obtained.

5.3. Diagonal Preconditioning of the Nonlinear Algorithm

Nonlinear minimization algorithms have been found to work more efficiently if the

variables are properly scaled. This means that all of the variables are correctly weighted,

i.e. that a unit step along the search direction will approximate the minimum of the

function in that direction. It also implies that the tolerances for the algorithm have the

correct scaling (a factor even for the more scale-invariant algorithms such as Newton's

method). One way of achieving this is through a diagonal preconditioning.

If the direction of search is obtained from the quasi-Newton equation (2.3.2) (which

is the case when a limited-memory quasi-Newton algorithm is used as a preconditioning

strategy), the BFGS formula (2.3.9) may be simplified so that the matrix #(*> does not

appear in the rank-two correction:

B(k+i) = B(k) + 1 gWgWT
+ 1 yWyWT.

gWTpW a(k)yWTpW

This result implies that even if the off-diagonal elements of ßW are unknown, the

exact diagonal elements can still be recurred. These diagonal elements may be used to

precondition the conjugate-gradient method. Let 7y and V>y denote the jth elements of

0<*> and yW respectively. If Afc+1 = d\ag(6lf... ,6n) and Ak = diag(«lt...,tfn) denote

the approximate diagonal Hessians during the (k + l)th and fcth iterations respectively,

then
J_

gWT
p(k) - a(k)y(k)Tp(k)

This diagonal preconditioning step involves an approximation to the diagonal pf G

based on ffW, pW, and y(*>. In the linear iteration of a truncated-Newton method,

though, matrix/vector products involving G are computed. It would be desirable to use

this more exact second-derivative information to compute A, the diagonal precondition-

ing matrix.

Several methods of computing A have been developed and tested. The first two are

rank-one and rank-two Quasi-Newton updates which are based on the (false) assumption

that G is a diagonal matrix. A third is a BFGS update to the diagonal of the approximate

54

6,. = 6,- + — 7; + 1 ^.

Hessian. In addition, it is possible to use exact information about the diagonal of the Hes-

sian either to precondition the linear algorithm or to initialize the linear preconditioning.

Note, however, that even if matrix-vector products of the form Gv can be found, it may

be inconvenient to compute Ga.

At each linear iteration, a computation of the form

y = Gs

is performed. If the symmetric rank-one Quasi-Newton update is rewritten with B

replaced by the diagonal matrix A, we obtain

A - A j. (2/ - A,-«)(y ~ Ai«)r

[y - Ais)Ts

Any off-diagonal terms in the rank-one term are ignored. Notice that no matrix need be

stored in order to implement this update.

A similar adaptation can be performed for the BFGS formula. This time the result

is

Al+i = At- - -J—{Ais){Ais)T + -jryyT.

Again, off-diagonal terms in the rank-one terms are ignored, and no matrix storage is

required.

There is a further way in which a diagonal quasi-Newton update can be used to

approximate to the diagonal of G. Because the linear conjugate-gradient algorithm is

equivalent to the BFGS algorithm (when applied to the same quadratic with Bo = I), it

is possible to show that Bn = G. Thus, if we were able to update only the diagonals of

B, at the end of n steps we would have the exact values for the diagonal elements of G.

Unlike the two diagonal updates above, this will be an exact rather than an approximate

quasi-Newton update.

To develop this update, we will ignore the nonlinear algorithm for the moment, and

concentrate our attention on one instance of the linear conjugate-gradient method. We

are attempting to minimize the quadratic function

<KP) = hPTGP + PTc,

and hence

g{p) = </>'{p) = Gp + c = -r(p),

55

where r(p) is the residual at p. The linear conjugate-gradient algorithm is initialized with

Po = 0> and at the q iteration the next estimate of the solution is computed as

Pq+l = Pq + <XqUq,

where uq is the search direction and aq is the step-length.

The BFGS algorithm computes the (same) search direction using the formula

Bquq = -gq, (5.3.1)

where gq = g[pq). If an exact line-search is used, the step-length for the BFGS algorithm

is the same as that for the linear conjugate-gradient algorithm. Under the assumptions

that po = 0, BQ = I, and that the new approximate Hessian Bq+\ is computed using

Bq+l = Bq- -fl—(Bqsq)(Bqsqf+ -^-yqy
T

q, (5.3.2)
sqDqsq VqSq

both algorithms compute the same estimates of the solution at every stage.

It is possible to adapt (5.3.2) so that only the diagonals of the update need be

computed. Using (5.3.1) and

89 — Vq+l ~Pq = <XqUq,

we can conclude that

Bqsq = —aqgq. (5.3.3)

The other important fact is

Vq = 9q+i -9q = otqGuq. (5.3.4)

If we incorporate (5.3.3) and (5.3.4) in (5.3.2), we obtain

Bq+l =Bq- ^rfrJ+ _i_(G«,)(Gt.f)r. (5.3.5)

Using (5.3.5), any individual element of Bq can be individually updated.

■ When the linear conjugate-gradient algorithm is used directly, (5.3.5) is quite ade-

quate. Unfortunately, problems arise when a linearly preconditioned modified-Lanczos

algorithm is used instead. First there is the problem of linear preconditioning. The

correspondence between the BFGS and the linear conjugate-gradient methods assumes

56

that no linear preconditioning is used. This is a very easy problem to surmount, since

the linear conjugate-gradient algorithm preconditioned by the matrix M is equivalent to

the BFGS algorithm initialized with B0 = M. To see this, replace G by M~»GM~i in

the above derivation.

The other problem concerns scaling. When the linear conjugate-gradient algorithm

is implicitly implemented using the Lanczos algorithm, the vectors corresponding to the

search direction and the residual are not properly scaled. This scaling does not affect

the final term in (5.3.5), since the scaling enters equally into the numerator and the

denominator. The other rank-one matrix is affected, however. In our implementation

of the algorithm, the correctly scaled residual is available. This leaves only the inner

product ujrq. Using the recurrence relation for the search direction uq, and the fact that

the residuals are M-orthogonal, it can be shown that

T T u
q
Ti = V«'

where

M^zq = r,.

Since our algorithm computes equally-scaled multiples of zq and rq as well as the correctly

scaled rq, it is possible to correctly compute the inner product.

Because the Hessian matrix is not always positive-definite, the modified-Lanczos al-

gorithm alters the subproblern it is solving when it runs across evidence of indefiniteness.

The preconditioning scheme is trying to approximate the diagonals of the actual Hessian

matrix, and two of the preconditioning algorithms described above have the property of

hereditary positive-definiteness, so there is some question as to what should be done when

the Hessian matrix is modified. We have chosen to omit the diagonal update whenever

the matrix goes indefinite. Since our implementation of the modified-Lanczos algorithm

only performs one iteration with the modified matrix before returning to the nonlinear

algorithm, very little second-derivative information is wasted using this approach.

There is some theoretical evidence to indicate that, among diagonal preconditionings,

this final preconditioning strategy is the most effective. Forsythe and Straus [1955] have

shown that if the Hessian matrix G has property A, then the diagonal of G is the optimal

diagonal preconditioning. This assumption is valid for many problems arising in partial

differential equations. Also, in the general case, van der Sluis [1969] has proven that

57

preconditioning with the diagonal of G will be nearly optimal, in the sense that the

condition number of G preconditioned by its diagonal will be at most n times as large

as the condition number of the optimally diagonally preconditioned G. Thus, estimating

the diagonal of G using the BFGS formula (1.5) should be effective for all problems.

Using (5.3.5) it is possible to compute any number of subdiagonals in addition to the

main diagonal. Because this extension is so straightforward, the details will be omitted

here.

5.4. Diagonal Preconditioning with MINRES

In sections 5.2 and 5.3, several methods for diagonally preconditioning a truncated-

Newton algorithm were described. The first three (the non-linear preconditioning and

the rank-one and rank-two diagonal updates) can immediately be applied to MINRES

since they do not rely on any special properties of the underlying linear algorithm.

However, a fourth preconditioning (a BFGS update to the diagonal of the approximate

Hessian) is dependent on the correspondence between the BFGS quasi-Newton algorithm

with exact line searches and the linear conjugate-gradient algorithm. In order to adapt

this preconditioning strategy to MINRES, we must analyze the correspondences between

MINRES and the linear conjugate-gradient method.

The search directions in MINRES are different to those generated in the linear

conjugate-gradient method. Consequently, at first sight we cannot implement the fourth

preconditioning technique which relied on the relationship between the search directions

for the BFGS algorithm applied to a quadratic function and those for the linear conjugate-

gradient algorithm. What we shall show, however, is that from information available in

the MINRES algorithm, we can easily generate both the required search directions and

the required vectors to update the Hessian approximation.

To this end, we define

Wq = [w1,...,wq-1,wq] = VqQ*,

and

Wq = [t»i,...,ti;,].

If the Lanczos process stops with ßm+i = 0, it is then easily verified that

GNm = VmTmL-T = VrnQl=Wm. (5.4.1)

58

It is now straightforward to establish the desired correspondences. Using results from

Paige and Saunders [1975], we obtain

Pq° " P? = rq[aqlcq)
2nq = 7,n, (5.4.2)

and
rq —rq- iqwq

= 0i»l »2- • -8,(8,«/, - vq+i))/cq - 7,w, (5.4.3)

= {-ßiHS2-'-sqvq+l)/cq = 6q+lvq+i.

Recall that we are trying to compute

*." = *. - ^ vf+ ip^j(G«f KG«,)',

where the vectors uq and r, refer to the search-direction and the residual from the

linear conjugate-gradient algorithm. Formula (5.4.3) indicates how to compute r, for

this update. Since

Pq+1 = Pq + OtqUq

and

Pf+i =P? + rqnq,

we can subtract these two equations from each other and use (5.4.2) to obtain

<*qUq = ilq+l + VnK+1 ~ 7«««- (5.4.4)

Multiplying (5.4.4) by G and using (5.4.1) we obtain

aqGuq = (7,+1 + Tq+i)wq+i - 7,ro,. (5.4.5)

Consequently, the vector Guq need not be calculated directly. This is of particular

significance in the non-linear algorithm when G may be unknown. Thus, we are able to

compute a scaled version of the conjugate-gradient search direction. Since the final term

in the BFGS update is scale-invariant, we can use (5.4.4) and (5.4.5) in order to compute

it. This is not true of the first term, but a, can be computed using

{aquq)T{aqGuq) {<*quq)T{aqGuq) {aquq)T{aqGuq)'
a, =

where M is the preconditioning matrix for the Lanczos algorithm. Combining all of these

59

results, we obtain the desired formula for the BFGS update:

5.5. Tridiagonal Preconditiong

The linear conjugate-gradient algorithm transforms the Hessian matrix G according

to the formula

GRq = VqTq + ßq+lvg+1e*

Thus

RqGRq — Tq.

This suggests the use of the preconditioning matrix

VqTqV
T

q = Mq.

The matrix Mq is rank deficient and consequently cannot be used directly as a precon-

ditioning matrix. By extending the definitions of Vq and Tq, we can construct a precon-

ditioning matrix utilizing the information in Mq.

In order to extend Vq, we form its QR factorization (using, for example, Householder

transformation (see Wilkinson [1965], pp. 290-299)):

Vq = QR,

where Q is an n X n orthogonal matrix; R is of the form

and Ri is a k X k upper-triangular matrix. If we partition Q conformally to R:

Q = (Qi\ Q2),

the columns of Q\ span the same space the columns of V,, and the columns of Qi span its

orthogonal complement. To complete the extension of V, to the whole space, we define

V,
-<*;>

60

To extend Tq, we exploit the convergence theory for the Lanczos algorithm. Parlett

[1980] has shown that the eigenvalues of Tq tend toward the extreme eigenvalues of G.

It is natural, then, to define

where

ci = xmin(r,) < 7 < Xmax(r,) = en.

Some possible choices for 7 are

7 = *(ei + en)

and

7 = («i -en)*.

The full preconditioning is then

M, = QRTqR
TQT.

A similar tridiagonal preconditioning can be produced by using the approximation

G pa R~TfqR~\

where Rq refers to the extension of Rq to the whole space (as in the definition of V,).

5.6. Approximating the Product of the Tridiagonal Preconditionings

Although at the first iteration the tridiagonal matrix from the Lanczos algorithm

has eigenvalues which approximate the extreme eigenvalues of G, at subsequent iterations

the Lanczos algorithm is being applied to a preconditioned version of G whose extreme

eigenvalues may bear little relation to those of G itself—in fact, this is the intent of the

preconditioning strategy. One attempt to surmount this problem involves computing

the product of the previous preconditioning matrices Mi, and using this product as the

preconditioning at the next iteration. Because of storage limitations, this product cannot

be computed exactly, and an approximation to it must be used. That approximation is

the topic of this section.

Suppose we have already computed

Jfc-i

Mfc-i» n fa
»=1

61

in the factored form

Also assume that the current preconditioning matrix Mk is available in the form

Here, L* is lower-bidiagonal and Lk-i is lower triangular. Then, by applying Ml on the

left and right to Mk-i, we obtain an approximation to M*:

If we treat the central factors in this product as block 2X2 matrices, compute their

product, and ignore off-diagonal terms, we obtain

where L* is lower triangular and 7fc = 7*7fc_1. Lk is obtained by doing a Cholesky

factorization of the first matrix in the sum above. This is the desired approximation to

the product of the preconditioning matrices.

62

6 Extensions to Other Problems

6.1. Introduction

So far, we have been concerned with the solution of unconstrained minimization

problems where few assumptions have been made about the form of the objective func-

tion F. It is very common to encounter problems where auxiliary conditions, called

constraints, are placed on the independent variables x. Another common problem is the

minimization of functions which can be represented as the sum of the squares of other

functions. Such problems are often referred to as least-squares problems.

In this chapter, we show how truncated-Newton methods can be adapted to solve

problems of both these types. In sections 6.2-6.4 we discuss constrained problems, and

in section 6.5 a treatment of least-squares problems is given. Since successful methods

already exist for dense problems of these types, we are especially concerned with large

sparse problems. In particular, currently it is difficult to solve constrained problems

where the number of variables n, the number of constraints t, and their difference n — t

are all large. Truncated-Newton methods provide some hope in this case.

6.2. Constrained Minimization Problems

The most general constrained optimization problem can be expressed in the form

minier) (6.2.1)
z

subject to the conditions

Ci{x)>0, i=l,...,m. (6.2.2)

Here, F(x) and c»(i) are functions mapping from 3Rn -+ JR.

Problems of this type are often further classified by the form of the constraints

(6.2.2). The major division is made between linear and non-linear constraints. The

constraints are also further divided into groups of equality and inequality constraints.

The form of the constraints can strongly affect the way in which the problem (6.2.1),

(6.2.2) is solved. Methods for problems with linear equality constraints will be discussed

in section 6.3, and linear inequality constraints in section 6.4. Methods for non-linearly

constrained problems are still an active research area. It is not yet clear how best to

apply Newton's method to such problems when the number of variables is large. For

63

this reason, and because the technical details of such methods can strongly affect the

development of the relevant theory, we will only consider the application of truncated-

Newton methods to linearly constrained problems. Much of what we describe will be

relevant to the non-linear case.

6.3. Problems with Linear Equality Constraints

The problem we are concerned with in this section (denoted hereafter as ECP) is

usually written in the form

minima;) (6.3.1)
X

subject to

Ax = 6, (6.3.2)

where A is a t X n matrix.

The set of constraints (6.3.2) restricts the set of "feasible" points, i.e. the set of

points which will be considered when solving (6.3.1). As usual,we denote the solution to

ECP by a; . If x is any other feasible point, then

A{Ax) = A{x* - x)

= Ax — Ax

= 6-6 = 0.

Also, if p is any vector satisfying

Ap = 0,

then
A{x + p) = Ax + Ap

= 6 + 0
= 6,

so x + p is also feasible. Thus, all feasible steps from the point x* are orthogonal to the

rows of A (or, equivalently, to the columns of AT).

Let Z denote a matrix whose columns form a basis for the null space of AT, i.e.

AZ = 0. Then any feasible point must be of the form x* + Zpz for some pz. If we

examine the Taylor series for F around the point x*, we find that

F(x* + ep) = F(x* + cZpz) = F{x*) + epT
zZ

Tg{x*) + ^pT
zZ

TG{x*)Zpz + • • •. (6.3.3)

Clearly, if x is the minimizing point for the constrained problem, then

ZTg{x*) = 0. (6.3.4)

64

The quantity ZTg will be referred to as the projected gradient.

The condition (6.3.4) implies that g(x) lies in the range of AT:

0 = ZTg(x*)

= ZT(ATgA + Zgz)

= ZTZgz.

Hence, gz = 0. The coefficients of the vector gA are denoted \lf...,\l and are called

the Lagrange multipliers at x*.

Using (6.3.4) and (6.3.3) we find that

F(x* + p) = F(x*) + ejpT
zZ

TG(x*)ZPz + • • •,

so that the matrix ZTGZ (the projected Hessian) must be positive semi-definite at x*.

Thus we have obtained first- and second-order necessary conditions for a solution

to problem ECP. Sufficient conditions, derived in the same way, are (if x* is a feasible

point):

(i) ZTg(x*) = 0 (g(x*) = A*).

(ii) ZTG(x)Z is positive definite.

We now move on to derive methods for solving ECP. To do this, we return to the

Taylor expansion (6.3.3). The function F is expanded about an arbitrary feasible point

x in the direction Zpz with 6=1, and the series is truncated after the quadratic term.

We obtain

F{x + ZPz) = F{x) + pT
zZ

Tg + ypT
zZ

TGZVz.

Setting ,JF(X + Zpz) = 0, we obtain that the step to the minimum of this quadratic is

found by solving the projected-Newton equations:

GzV = -9z, (6.3.5)

where
Gz = Z GZ,

gz = ZTg.

Because of the similarity between (6.3.5) and the Newton equations (2.2.3), it is easy

to derive a modified-Newton algorithm for solving ECP by specifying that C?W and gW

be replaced by Gz ' and g\ ' in all the relevant formulas.

65

Truncated-Newton methods can be extended just as easily. All that is required is a

subroutine to compute products of the form

y = G^v

*
for any v. The fact that a projected Hessian is being used is irrelevant to the algorithm.

In the above discussion, we have not stated how to obtain Z, the basis for the null-

space of AT. In the dense case, it is possible to derive Z from a LQ factorization of A.

(We will assume that A has full row rank.) There exists an orthogonal matrix Q which,

when applied to A oh the right, yields an lower-triangular matrix:

AQ = L = {L 0), i.e. A = QTL,

where L is a t X t lower-triangular matrix. We partition Q conformally to L:

Q = (Y Z),

so that

AQ = {AYAZ) = {L 0).

Thus, the last (n — t) columns of Q are orthogonal to the rows of A, and Z is the

desired basis for the null space of AT. The LQ factorization above can be computed

using elementary orthogonal transformations (such as Householder reflections or Givens

rotations).

In the sparse case, it is usually preferable to use a technique known as variable

reduction to form Z. We partition the constraint matrix A in the form

A = (TU),

where T is a t X t non-singular matrix. For simplicity, we have assumed that T cor-

responds to the first t columns of A. With this partitioning of A, a matrix Z orthogonal

to the rows of A can be defined as

<-T7u}
If Z is defined in this way, it need not be explicitly formed. Wc need only be able to solve

systems of equations involving T and TT, so that all that is required is a factorization

66

of T. Note that the matrix T-1 is not obtained explicitly. To compute the product Z

times a vector, we perform back-substitution using the factors of T. This allows us to

exploit sparsity in the constraint matrix, although in general the condition number of the

matrix Z obtained from variable reduction will be larger than for the matrix Z obtained

from an LQ factorization (in that case, we will have K(Z) = 1).

6.4. Linear Inequality Constraints

6.4.1. Theory

The problem we are considering in this section (denoted by ICP) will be posed in

the form

minF(x) (6.4.1)
Z

subject to
Ax = b,

, ^ ^ (6-4-2) i <x < u, v '

where A is an m X n matrix. Notice that the only inequality constraints are just simple

bounds on the variables. General inequality constraints are converted to this form by

the introduction of slack variables. This problem is considerably more complex than the

equality-constraint problem ECP since we do not know in advance which bounds (if any)

will be exactly satisfied as equalities at the solution.

If A were the set of constraints active at the solution, then the solution of ICP

would also be the solution of the equality-constraint problem minF(x) subject to Äx =

b. This suggests applying techniques for the equality-constraint case to ICP. We will

obtain the solution to problem ICP by solving a sequence of minimization problems

subject to linear equality constraints. The objective function (6.4.1) remains the same

in all of these subproblems, but the constraint matrix is modified to reflect the current

assumptions about which bounds are satisfied as equalities at the solution. We will refer

to the current set of constraints as the working set and will assume that they correspond

to the equation Ax = b. As before, Z will be used to denote a matrix satisfying AZ = 0.

The working set will contain a subset of the original problem constraints, and will

attempt to predict the correct active set. Since the prediction of the active set could be

wrong, an active set method must also include procedures for testing whether the currect

prediction is correct and altering it if not. An essential feature of the active set methods

67

considered here is that all iterates are feasible.

Following the development in Murtagh and Saunders [1978], the matrix A is parti-

tioned as

A = {BSN) (6.4.3)

where B is a square m X m non-singular matrix, TV is m X r, and S is m X (n -

m-r). B is called the basis matrix and its columns correspond to the bask variables.

The columns of N correspond to the nonbask variables, i.e. those variables which are

equal to one of their bounds. The columns of S correspond to the remaining variables,

which are called superbask. The number of superbasic variables indicates the number of

degrees of freedom remaining in the minimization. In the important special case of linear

programming v/here F is a linear function, the matrix S is null. With the partitioning

(6.4.3) of the matrix A, we can write the constraints for the subproblem in the form

Ax

where the components of bN are taken from either I or u, depending on whether the

lower or upper bound is binding.

We expand the function F in a Taylor series about some feasible point x:

F[x + p) = F{x) + g{x)Tp + $pTG{x)p + • • •. (6.4.5)

If F(x) were a quadratic function, then G would be a constant matrix, and there would

be no higher-order terms in this expansion. In this case, we could obtain a constrained

stationary point at x + p by insisting that .

(» o ?)£) = <>• <"*>
i.e. the step remains on the surface given by the intersection of the active constraints;

also

0+€HE °P' (6.4.7)

i.e. the gradient at x + p is expressible as a linear combination of the active constraint

normals. These two conditions correspond to the conditions p = Zpz and (6.3.4) in the

previous section.

68

For a more general function F(x), the step p may not lead directly to a stationary

point, but (6.4.6) and (6.4.7) can be used to determine a feasible descent direction. From

(6.4.6) we have pN = 0 and pB = -Wps, where W = J3-1S. Thus,

Notice the correspondence between this matrix and the matrix Z computed using the

variable-reduction method in the previous section. As before, we do not explicitly

compute -B-1, but instead compute some factorization of this matrix. Back-substitution

is then used to compute the necessary products of W times a vector. This matrix is

indeed orthogonal to the working set matrix A. The Lagrange multipliers (/z X)T can be

computed using the equations

B*n = gB + {I 0 0)G(/]ps

and

0
(T> \ = gN-NTiM+{0 0 I)G\ I \ps.

When ps = 0, these equations reduce to

H = B-TgB

X = gN - NT/i.

The Lagrange multipliers can be used to modify the working set of constraints. For

example, suppose that bound t is fixed at its lower endpoint, i.e. we are assuming that

Xi = /,-. If the Lagrange multiplier X,- corresponding to this bound is negative, then

the objective function F will decrease locally if x» is allowed to increase in value. This

indicates that bound i could be dropped from the working set. A similar situation exists

for upper bounds, but there the Lagrange multiplier should be positive if the bound is

to be relaxed.

Using the Taylor series (6.4.5) and equation (6.4.6), we obtain that a first-order

condition for x* to solve ICP is that ZTg(x*) = 0. This is the same condition as for the

equality-constraint problem. We are assuming, of course, that x* is a feasible point and

that Ax* = b.

The Taylor expansion (6.4.5) also leads us to a second-order condition for a solution

69

to ICP. Because the projected gradient is zero, we obtain directly that

Gg = ZTGZ

must be positive semi-definite at x*.

Sufficient conditions for a minimum are slightly more complex, since the Lagrange

multiplier for an active constraint may be zero. Also, complications can arise because a

variable could be fixed at either a lower or an upper bound. For simplicity, we assume

that all active bounds are lower bounds. Results for upper bounds are obtained by

changing > to < below. Keeping this in mind, we find that x* is a solution to ICP if:

(i) Ax* = b, I <x* <u and A x* =b.

(ii) ZTg{x*) = 0 (where AZ = 0).

(iii) X* > 0 (where X is obtained from (6.4.7)).

(iv) ZTG(x*)Z is positive definite.

(v) If X* = 0, then pTG{x*)p > 0 for all p such that pNi > 0.

Assuming that an initial feasible point is available, the general structure of an

working-set algorithm can be summarized as follows:

(6.4.6) Working-set Algorithm

Wl. Let xW be the current point. We assume that x(fc> is feasible and

that A is the matrix of constraints active at x^k\

W2. Check if x^ is the solution of the equality-constraint problem. If

not, go to step W5.

W3. Calculate X = gN - NTp. If X satisfies the second-order sufficient

conditions for a minimum, then x* is the solution to ICP. Terminate the

algorithm.

W4. If X, < 0 for some variable x^t at its lower bound (or X > 0

for some xNi at its upper bound), compute a direction pW such that

gWTpW < 0, pig > 0 (p$ < 0), and pj*> = 0 for i ^ j. For such a

p(fc), the t'-th bound becomes inactive and is deleted from the active set.

Go to step W6.

W5. {g{k) =£ AX) Construct a direction pW such that AV*
}
 = 0,

pCO p(*) < o(i.e. a descent direction for the equality-constraint problem).

This can be done by solving the projected-Newton equations for the

70

equality-constraint problem.

W6. (line search) Normally, the line search would be based solely on

a "sufficient decrease" in the objective function F. In this context, it is

possible to run into a formerly inactive bound while searching along pW.

If a new constraint is encountered during the linesearch, it is then added

to the active set. Go to step Wl.

Because there is possibly some choice in step W4 as to which constraint to drop

from the active set, various active-set strategies have been suggested for solving ICP. For

this thesis, where we are concerned with the application of truncated-Newton methods,

the details of the strategy are not important.

6.4.2. The Application of Truncated-Newton Methods to Inequality-

Constraint Problems

Since the algorithm described in the previous section computes a search direction p

by solving a set of projected-Newton equations, it may appear that truncated-Newton

methods can be applied directly for the solution of ICP. If no preconditioning is used,

this is indeed true. The construction of pW \n step W5 is then a local problem involving

the (approximate) solution of a set of linear equations.

However, when preconditioning is a part of the algorithm, certain complications

arise. With equality constraints, the projection matrix Z remains constant; but with

inequality constraints, the projection matrix, and hence the structure and size of the

projected-Newton equations (6.3.5), can change from iteration to iteration as the active,

set changes. In this section, we describe how to modify the preconditioning matrix to

reflect these changes.

In order to simplify the discussion, we will assume (without loss of generality)

that bounds are added or deleted one at a time. We will also assume that a diagonal

preconditioning is being used. More complex preconditionings can be used, and it is

straightforward to adapt the following discussion to the. more general case. In fact,

the ideas here are based on the presentation in Gill and Murray [1973b] where a (full)

quasi-Newton approximation to the Hessian is being modified.

Deleting a bound corresponds to deleting a column (say the last) from A. This

implies that a column must be added to Z:

71

Z = (Z\ z).

Then
r fZTGZZTGz\

1 GZ-\zTGZ zTGzf

(For large-scale problems, this matrix would never be explicitly computed; we use it

here only as a theoretical tool.) Let D be our diagonal preconditioning corresponding to

ZTGZ. A natural choice for D, the new preconditioning, is thus

*-(">

where a = zTGz (or a — 1 if this quantity is expensive to compute).

Adding a bound is a slightly more difficult problem. This corresponds to reducing

the size of Z by one column. If we are deleting the g-th super basic variable, then we

just delete the 9-th diagonal element of D to obtain D. Deletion of a basic variable

can be achieved by interchanging the basic variable with a superbasic variable, and then

deleting the new superbasic column as indicated.

The interchange of the p-th basic variable with the g-th superbasic variable can be

described by an equation of the form

Z = Z{I + eqv
T),

where e, is the g-th unit vector and v is defined by the equations

BTitp = ep,

V = STnp,

yq = yTeq,

v = — {y + eq).
Vq

These quantities are easily computed.

We would now like to approximate the diagonal D of

ZTGZ = (/ + eqv
T)TZTGZ{I + eqv

T)

given Z and an approximation D to the diagonal of ZTGZ. The formula for the new

diagonal element d» is

3, = di + IviZ^Gzi + z^Gzqv1,

72

where z,- is the t'-th column of Z. Unless the values {Z^GZJ} are inexpensive to compute,

updating D in this manner will not be feasible. As a result, we suggest simply deleting the

g-th column of D; there is little justification for applying the transformation (J + eqv
T)

directly to D.

Further details concerning the treatment of constraint matrices for large problems

can be found in Murtagh and Saunders [1978].

6.5. Least-Squares Problems

Least-squares problems are concerned with finding a point x which minimizes the

sum of squares of nonlinear functions

m

1=1

Such problems can be solved using the minimization algorithms described in the previous

chapters, but the special form of the function F suggests the use of more specialized

techniques.

The gradient vector g(x) and Hessian matrix G(x) of F[x) are given by 2 J(x)Tf(x)

and 2{J{x)TJ[x) + B{x)) respectively, where J[x) is the m X n Jacobian matrix of f(x)

whose i-th row is V/,(z) = {dfi/dxl,dfi/dza,...,dfi/dzn), B{x) = £,1i /i(x)G,-(ar)

and Gi(x) is the Hessian matrix of fi[x). [F(x) is assumed to be twice continuously

differentiable, although the methods discussed in this section will often work when this

condition does not hold.) The restriction that m is greater than or equal to n serves only

to simplify the notation.

If Newton's method is applied to the solution of (6.5.1), the special form of the

Hessian matrix and gradient vector leads to the following set of linear equations for the

Newton direction

(J(xW)TJ(xW) + B(xW))pW = -;(iW)T/(*W). (6.5.2)

The Gauss-Newton method was the first designed to exploit the special structure

of the Hessian matrix and gradient vector which occurs in least-squares problems. The

method computes the direction of search as the solution to

Jix^fA^P^N = -/(x(fc))T/(z(fc)). (6.5.3)

73

These equations are obtained by neglecting the second-derivative matrix B[x^) in (6.5.2).

The Gauss-Newton method is intended for problems where ||2?(x)|| is small compared to

||J(i)TJ(x)||, such as the so-called "small-residual problem" where f(x) —*■ 0 as x —► x .

For these problems the Gauss-Newton method will ultimately converge at the same rate

as Newton's method, despite the fact that only first-derivative information is used. We

will concentrate on that case here.

Truncated-Newton methods can be applied directly to the solution of the equations

(6.5.3) (or even (6.5.2) if the second derivative information in B(x) is available). The fact

that the Hessian matrix and gradient are of a special form is irrelevant to the truncated-

Newton algorithm.

If we assume that the matrix J is of full rank, then the system of equations (6.5.3)

will have a positive-definite coefficient matrix. Thus, unlike when we were solving more

general optimization problems, it is possible to use the regular linear conjugate-gradient

algorithm to approximately solve (6.5.3). It is possible to use the algorithm described in

section 2.4, if we set A = JTJ. However, because of the factored form of the coefficient

matrix in (6.5.3), and because we would like to precondition the linear algorithm, the

following set of formulas is to be preferred:

Given po. Set sQ = f — Jp0, TQ = JT
8Q.

For g = 0,l,...

zq = M~lrq

uq = zq + /?,«,_ 1

/?,=
T zqr %lZq-fq-l

ßo = 0
v1 = Juq

Xq+1 = xq + aquq

Q, = zTr 9 q/VqV1
8q+l = 8q — aqvq

r9+l = J 8q+l

Next q.

Here, M is some approximation to JTJ.

• The only remaining problem is how to generate the preconditioning matrix M. When

the matrix J is available, then we would always use diag{jTj}. Otherwise, we could

use one of the diagonal preconditionings described in Chapter 5. They require a pair

of vectors (u,Gu), or in this case [u,JTJu). When the linear algorithm is programmed

74

using the formulas above, the vector JTJu is not a natural by-product of the algorithm.

However, if we compute the difference between the successive residuals

rq+i -rq = J^Sg+l - 8q)

= —aqJ
TJuq,

we are able to obtain the desired vector.

When the derivatives of the functions /,• are available, it is also possible to solve the

full Newton equations (6.5.2) using a linear conjugate-gradient algorithm. If the matrix

J were sparse, then this algorithm could be preconditioned using JTJ. Otherwise, the

diagonal of JTJ or an approximation to it could be used.

75

7 Numerical Results

7.1. Introduction

In this Chapter we discuss the numerical behavior of several of the methods dis-

cussed earlier. It was not feasible to test every combination of techniques that has been

described, but we have attempted to ascertain through selective testing the most promis-

ing version of a truncated-Newton algorithm for general usage. The method used to

compare algorithms consists of applying them to a set of test problems. We do not claim

that this is a completely satisfactory means of comparison, but we believe that, if the

test problems are selected carefully, the evidence obtained can be a valuable aid in the

selection of the best algorithm.

This method of testing has many drawbacks. One difficulty is the volume of data

that subsequently needs analyzing. We have displayed the raw data together with an

aggregation of the results. Too much emphasis, however, should not be placed on the

aggregated numbers since they are unduly weighted by the more difficult problems. An

alternative form of display is to enter as 1 the best result and have all other entries be

their multiple of this result. The drawback to this method is in our view more serious

since greater emphasis is then placed on problems that are easily solved.

The popularity and success of battery testing is largely due to the fact that for many

algorithms the differences in results are so large as to leave little doubt as to the correct

conclusion. It is also a useful technique for demonstrating that an algorithm is poor. The

converse, however, is not always true. If an algorithm fails where others easily succeed it

demonstrates a flaw in that algorithm. If an algorithm is simply a little slower or faster

then this could merely be due to the luck of the draw.

7.2 The assessment criterion

All optimization software requires a criterion for terminating the computation of the

sequence {x^}. Ideally, if we wish to measure the comparative efficiency of routines we

should set the same termination criterion in all the routines tested and then compute

the cost of a minimization, in terms of the number of function evaluations for instance.

However, there is no universal agreement on what is the best termination criterion and

a different criterion used by another researcher may result in a wide variation in the

76

accuracy of the answer obtained. The question remains, therefore, as to the point at

which we should assess the efficiency of the various methods. The assessment criterion

used here is to take the first point x^ for which

Ft» - F(x*)< r(l + \F(x*)\), (7.2.1)

where T is a scalar. Some authors have argued against the use of (7.2.1) because it includes

F[x), which is unknown on real problems. We believe that such authors are confusing an

assessment criterion, where the use of F[x) is legitimate, with a termination criterion,

where it is not.

If the criterion (7.2.1) is to give a realistic assessment of the performance of an

algorithm, the choice of T must give a point x^ which is close to a final estimate of x*

obtained with a realistic termination criterion. The relative performance of algorithms

with superlinear convergence is almost invariant with the choice of T and a very small

value can be used. For example, on an IBM 370/168, where the function can be computed

to approximately fifteen decimal places in double precision, a reasonable choice of T is

10~10. However, for conjugate-gradient type methods, which exhibit a linear rate of

convergence, the performance can vary widely with the choice of T. It is not unusual

for the number of function evaluations to be three times greater for T = 10-10 than for

T = 10~5. In this case it is important that a moderate termination criterion be used. In

all the tests carried out for this study, T was set at 10-5.

7.3 The algorithms tested

The results of this chapter, in addition to exhibiting the performance of a variety of

truncated-Newton algorithms, illustrate the numerical behaviour of three algorithms for

general unconstrained minimization. These are:

1. Algorithm PLMA

Diagonally preconditioned two-step BFGS formula with accumulated step (see Gill

and Murray [1979]).

2. Algorithm MNM

A modified Newton method using first and second derivatives (see Gill and Murray

[1974a]).

77

3. Algorithm QNM

A quasi-Newton method using the full n X n BFGS update of the approximate

Hessian Matrix (see Gill and Murray [1972]).

The use of these accepted and widely-tested algorithms gives us an objective test of the

overall effectiveness of our truncated-Newton methods.

7.4 The test examples

The provision of suitable test problems is extremely difficult. Problems that are

used to measure the efficiency of algorithms for small dense problems are completely

unsatisfactory since the algorithms considered here are intended mainly for large-scale

problems. For example, it is pointless to test a truncated-Newton method on a very small

problem since the algorithm will be effectively performing a full Newton iteration.

A serious difficulty with using very large test problems is that, for all but the most

trivial examples, the CPU time necessary to compute the objective function will be very

large. This is typically the case if we attempt to use real-world problems for testing

purposes. Moreover, it is desirable that problems be defined in such a way that they

may be used by other researchers. Large-scale real-world problems almost invariably are

written in a non-portable form or can be run only with vast quantities of numerical data.

In this study we have attempted to compromise on these issues by collecting a set of

non-trivial problems that can be run with moderate ease at other installations. Eighteen

problems are considered. Of these, 16 problems are of dimension 50 or greater and 7

problems are of dimension 100. It is necessary to present an extensive number of results

because the performance of conjugate-gradient-type methods is generally erratic. If we

are to identify which strategy gives a true improvement in performance, a wide spectrum

of results must be considered.

The test examples may be separated into two classes. The first class contains

problems whose Hessian matrix at the solution has clustered eigenvalues; the second

contains problems whose Hessian matrix has an arbitrary eigenvalue distribution.

Example 1. Penl (Gill, Murray, and Pitfield [1972])

■F(*)=«£>-i)»+6(£*?-iY
t=i \=i '

78

The solution varies with n, but a:,- = x,^lt t = l,...,n - 1. All the runs made

were with a — 1, b = 10~3. With these values, the Hessian matrix at the solution

has n - 1 eigenvalues 0(1) and one eigenvalue O(10-3). The Hessian matrix is full

and consequently, for large values of n, conjugate-gradient type methods are the only

techniques available.

Example 2. Pen2 (Gill, Murray, and Pitfield [1972])

F(x) = a J2((eXi/10 + eXi-l/10 ~ ei)' + (*I</10 ~ e~1/10)2)

where c< = e*'/10 + e(*'-i)/i° for i = 2,..., n. The solution varies with n, but at,- = aij+i

for t = 1,..., n — 1. This example was also run with a = 1 and b = 10-3. For these

values the Hessian matrix at the solution has n — 2 eigenvalues 0(1) and two eigenvalues

O(10~3). The Hessian matrix is full.

Example 3. Pen3 (Gill, Murray, and Pitfield [1972])

!n-2
1 + e*n J2 (x* + 2l»+i + 10a:«+2 ~ !)2

+ (jC (*•■ + 2x»+i + 10x<+* - !)2)(£ (2a;.- + *<+i - 3)2)
n-2 'I

+ e»-» £ (2a;,- + xl+1 - 3)H

(n v2 n/2

At the minimum, this function has n/2 eigenvalues 0(1) and n/2 eigenvalues O(10-3).

The Hessian matrix is full.

The remaining examples have arbitrary distributions of eigenvalues at the solution.

Example 4. Chebyquad (Fletcher [1965])

F{x) = J2 M*)*>

where

Mx) = JQ r;(*)d*-!£>;(*,■), ,- = i,...,«,
3 = 1

79

and T^(x) is the i -order shifted Chebyshcv polynomial. The Hessian matrix is full.

Example 5. GenRose

This function is a generalization of the well-known two-dimensional Rosenbrock

function (Rosenbrock [I960]).

F(x) = 1 + £(l00(z, " *v-i)2 + (1 " *.•)')•
»=2

Our implementation of this function differs from most others in that F(x) is unity at

the solution rather than zero. This modification ensures that the function cannot be

computed with unusually high accuracy at the solution and is therefore more typical of

practical problems. °)

The next three examples arise from the discretization of problems in the calculus of

variations. Similar problems arise in the numerical solution of optimal control problems.

The general continuous problem is to find the minimum of the functional

J(x[t)) = j f(t,x(t),x'(t))dt,

over the set of piecewise differentiable curves with the boundary conditions x(0) = a,

x[l) = b. If x(t) is expressed as a linear sum of functions that span the space of piecewise

cubic polynomials then minimization of J becomes a finite-dimensional problem with a

tri-diagonal Hessian matrix.

Example 6. Call (Gill and Murray [1973a])

J(x(t)) = J L{t)2 + x'{t) tan"1 x'{t) - log(l + x'(*)2)H dt,

with the boundary conditions x(0) = 1, x(l) = 2.

Example 7. Cal2 (Gill and Murray [1973a])

J(x{t)) = J |l00(x(i) - x\tff + (1 - x\t)f\ dt,

with the boundary conditions z(0) = x(l) = 0.

Example 8. Cal3 (Gill and Murray [1973a])

j(xW) = /o
1{e-2^)2(x'W2-l)}^

80

with the boundary conditions x{0) = 1, x(l) = 0.

Example 9. QOR (Toint [1978])

50 33

^) = E^?+EA*- E «/ + E *i).
t=i t=i v ygi4(t) yeß(.) '

where the constants a,-, ft, d,- and sets A(i) and ,8(1) are described in Toint's paper. This

function is convex with a sparse Hessian matrix.

Example 10. GOR (Toint [1978])

50 33

F{x)='£ci(xi)+Yibi(yi),
,=1 t-=i

where
(OCiXi loge(l + Xi), Xi > 0,

{-otiXi loge(l + a;,), Xi < 0,

and

i€A(t) yes(t)

. , * ,. ~>ge(l + j,,), Vi >0,
OilVi) =

», < 0.

The constants a,-, A, d» and sets A(i) and 2?(i) are defined as in Example QOR. This

function is convex but there are discontinuities in the second derivatives.

Example 11. ChnRose (Toint [1978])

25

F(x) = 1+J2 0<K-i " *.?)2 + (1" «O"),
t=2

where the constants a» are those used in the example QOR. The value of F(x) at the

solution has been modified as in Example 5. The Hessian matrix is tri-diagonal.

7.5 Starting points

The starting points used were the following.

Start 1

z<°> = (0,0,...,0)r.

81

Start 2

x(0)

Start 3

= (_1_ JL _JL_Y
\n + l'n+l""'n + lj

x(°)=(l,-l,l,-l,...)r.

Start 4

^=(-l,-l,...,-l)a

7.6 Description of the tests

All the algorithms are coded in double-precision Fortran IV. The runs were made on

an IBM 370/168, for which the relative machine precision, e, is approximately 10-15.

Each algorithm requires two additional user-specified parameters: X, the bound upon

the change in x at each iteration, (the quantity ||a;(fc+1) — z^l^) and Feat, an estimate

of the value of the objective function at the solution. For all problems, the value of X

was set at 10, and Feat was set to the value of F[x) at the solution.

For the initial testing, a limited set of test functions was used. This set includes: Penl

(N = 50, Start 3), GenRose {N = 50, Start 2), Call [N = 50, Start 1), and Chebyquad

{N = 20, Start 2). These four functions have quite different behavior, and it was found

that performance on these test functions was often indicative of the performance of an

algorithm on the complete battery of test functions. For these limited tests, only the

value i\ = .25 was used and an time limit of 15 seconds was placed on each test run.

In order to determine a "good" truncated-Newton algorithm and also to compare the

performance of this good truncated-Newton algorithm against better-known algorithms,

more complete tests were carried out. The complete set of test functions was used, and

the values r\ = .25, .1, .001 were tried. Many of these numerical results were obtained by

Gill and Murray [1979]. Since the optimal value of r/ is often larger for algorithms which

use second-derivative information, a series of tests with r\ = .5, .7, .9. was also carried

out. Finally, a special set of comparisons against Newton's method was done.

The full set of results is contained in the tables in the appendix. Each entry in a

82

table consists of a pair of values: the first is the number of non-linear iterations required

to find the solution, the second is the number of function/gradient evaluations (unless

otherwise indicated, this number includes the function evaluations in the linesearch as

well as those used to compute the matrix-vector products in the linear sub-algorithm). A

number of the test functions have sparse Hessian matrices, and in these cases it is possible

to use sparse finite-differencing to compute these matrices at the beginning of each non-

linear iteration. A lower-case "s" at the end of a function name (for example, GenRs)

indicates that sparse finite-differencing is being used. (The routines for computing the

sparse Hessian matrices were developed by Thapa [1980].)

7.7 Discussion of results

The first tests were used to determine the better preconditioning strategies. These

are summarized in table 1. The routine used was a preconditioned Lanczos algorithm

with forcing function (4.3.6) and the standard forcing sequence (4.4.3). PLMA was the

non-linear outer algorithm. The terms used to describe the preconditioning strategies

correspond to section 8.2.3; the letters DNC indicate that the algorithm did not converge

in 15 CPU seconds.

The results indicate that the diagonal preconditionings are the most effective. The

exact diagonal of the Hessian often performs very well; the only exception is for the

function GenR, where the Hessian matrix is frequently indefinite. A better strategy for

handling negative diagonal elements might improve the result in this case (for these runs,

negative diagonal elements were replaced by their absolute value).

Tables 2 and 3 show the effects of different forcing sequences. The exact BFGS

diagonal preconditioning was used in combination with the routine described for table

1. Table 2 was made using the forcing function (4.3.6) and table 3 with function (4.3.5).

The tests in table 2 follow naturally from the discussion in section 4.4; those in table 3

were made because the standard forcing sequence (<j>k = min {l/fc, ||(r"||}) was found to

be too stringent in combination with function (4.3.5).

Our experience with alternative forcing sequences has been inconclusive; the tests in

Table 2 were included to show how well they sometimes performed on specific functions.

The standard forcing sequence is quite effective for the class of problems chosen. Table

3 shows that scaling this forcing sequence by 1.5 is worthwhile when function (4.3.5) is

83

being used.

Tables 4A-4E were used to choose the optimal truncated-Newton routine. The three

approximate diagonal preconditionings were used on all test problems with 77 = .25 in

combination with the following routines:

1. TNI—a preconditioned Lanczos algorithm with the standard forc-

ing sequence and forcing function (4.2.2),

2. TN2—a preconditioned Lanczos algorithm with the standard forc-

ing sequence scaled by 1.5 and forcing function (4.3.5),

3. TN3—as in TNI, but with forcing function (4.3.6),

4. MINR—a preconditioned MNRES algorithm.

All routines use PLMA as the non-linear outer algorithm. The numbering of the precon-

ditionings corresponds to the list in section 8.2.3.

The totals from all the runs are listed in table 4E. The best routine could be decided

upon in a number of ways:

1. iteration count

2. function evaluations (regular)

3. function evaluations (sparse)

4. function evaluations (total)

5. function evaluations (regular) plus iteration count

6. function evaluations (sparse) plus iteration count

7. function evaluations (total) plus iteration count

With the exception of criteria 2 and 5 where TN2 PC=1 is best, the totals indicate that

TNI PC=3 is the optimal routine.

In order to ascertain the overall effectiveness of truncated-Newton algorithms,

routine TNI PC=3 (hereafter referred to simply as TN) was compared with PLMA,

MNM, and QNM on the full set of test functions for 77 = .25, .1, .001. In addition, a very

simple truncated-Newton algorithm was examined both with and without an exact BFGS

diagonal preconditioning (see section 8.3.2). These routines are referred to as PBTN and

BTN, respectively (the initials P and B stand for "preconditioned" and "basic"). The

results of these tests can be .found in tables 5A-5E; NR indicates that a test was not run,

and NA that a total is not available.

As table 5E indicates, TN only requires 50% to 80% as many function evaluations

84

as PLMA to solve the full set of test problems. This seems a significant reduction. When

sparse finite-differencing is used, both PBTN and BTN can compare favorably with TN.

Without this feature, however, they are considerably slower. This is especially true of

the unpreconditioned routine BTN; a major factor is the performance of this routine on

the problem Call N = 100.

The set of tests summarized in tables 6A and 6B shows the performance of routine

TN with different values of JJ. Regardless of which performance measure is used, .25

is always the overall optimal value of r\ for this routine. The results were insensitive

to the various choices of i). This is in marked contrast to PLMA. The main reason for

this insensitivity was that the initial step was close to the minimum along the search

direction.

The final set of tests, summarized in tables 7A and 7B, are a special comparison of the

truncated-Newton and modified-Newton algorithms. When TN and MNA were compared

in the tables 5, the work required to compute second-derivative information was ignored

for MNA but counted for TN, even though TN only computes partial second-derivative

information whereas MNA computes the full Hessian matrix. In the tables 7, these

two routines are evaluated in a fairer way. It is assumed that, at the beginning of each

nonlinear iteration, the full Hessian is evaluated and then used either to solve the Newton

equations (in the case of MNA) or to compute the necessary matrix/vector products (for

TN). As a result, in the number pairs in the tables, the first number indicates the

number of Hessian matrices computed, and the second the number of function/gradient

evaluations used in the linear search. As the totals indicate, the truncated-Newton

algorithm requires fewer Hessian matrices as well as fewer function/gradient evaluations.

In fact, TN is almost twice as efficient as MNA. This is especially surprising since TN is a

routine designed for large-scale function minimization and not for general optimization,

like MNA.

7.8 A supplementary test problem

• Up until this point, all of the algorithms have been tested on a particular set of

test problems. This raises the question of whether a good truncated-Newton algorithm

has been found or whether we have just found the optimal algorithm for this set of

test functions. In addition, for practical reasons we have limited ourselves to relatively

85

small test functions (n < 100). For this reason, we now test algorithm TN on a larger,

independent test example.

The function is taken from Murtagh and Saunders [1980]. It investigates the optimal

control of a spring, mass, and damper system. In its original form, the problem has a

quadratic objective function and a set of equality and inequality constraints:

T

2
min/(x,y,«) = -J]i?

t=0

subject to
xt+i = xt + 0.2yt

Vt+i — Vt- O.Oly? - 0.004a;t + 0.2«t

-0.2 <ut< 0.2

Vt > -1.0

for t = 0,..., T - 1, and

XQ = 10, y0 = 0, yr = 0.

The starting point used was xt = 0, yt = — 1 (t = 0,..., T), and ut = 0 (t = 0,..., T —

1). For these tests, T = 100, and so there are 302 variables in all.

Since this is a constrained optimization problem, and algorithm TN is only designed

to solve unconstrained problems, we minimize a related penalty function:

F(x, y, u) = pf(x, y, u) + cTc.

Here, c is a vector with one component for each constraint above. For example, ci =

Xi — XQ — 0.2yo- If Ci is a component corresponding to an inequality constraint such as

yt > —1.0, then c,- = yt + 1.0 if yt < —1.0, and ct- = 0.0 otherwise. The parameter p is

a penalty coefficient; the smaller its value, the more stringently the constraints must be

satisfied. For our tests, p was set equal to 10-3, 10-5, and 10~7. The minimal value of

the objective function / subject to the given constraints is 1186.382.

Setting the penalty parameter p = 10-3 was not sufficient for our purposes, since

the minimum of the penalty function was quite different from the minimum of the original

function; in this case, the final value of / was 729.2, not even close to the optimal value.

There were also problems with p = 10-7, but for quite different reasons. Recall that

the convergence criterion for the algorithm is given by (7.2.1), where r = 10-5. Here,

Pm fmin = P X 1186.382 = 1.2 X 10~4, so that only two digits of the optimal function

86

value were obtained.

For p = 10-5, the final computed function value was / = 1190.384, which is

close to the optimal value of the constrained function. The value of cTc, the square

of the norm of the constraint violations, was approximately 10~"*. When second deriva-

tives were available to compute the matrix/vector products, algorithm TN required 168

function/gradient evaluations to minimize this penalty function. Murtagh and Saunders

[1980], using a projected Lagrangian algorithm, required 203 function/gradient evalua-

tions to obtain a solution with cTc < 10-12. Although these two results are not directly

comparable, they do indicate that the truncated-Newton algorithm is effective in solving

this problem. When the matrix/vector products were computed using finite differencing,

algorithm TN required 1727 function/gradient evaluations to minimize F. If sparse finite-

differencing had been used to approximate the Hessian, 423 function/gradient evaluations

would have been used (each Hessian can be computed using five gradients).

There is reason to assume that truncated-Newton algorithms will in general perform

well on penalty functions. Because of the special form of F, the Hessian matrix will often

have two clusters of eigenvalues. The first, corresponding to the objective function p • /,

will be O(p); the second, corresponding to the penalty term, will be O(l). The Lanczos

algorithm, applied to the soluton of the Newton equations, works well if the matrix has

only a few clusters of eigenvalues. Also, the Lanczos algorithm is able to quickly and

accurately approximate the extreme eigenvalues of a matrix (see Parlett [1980], section

12-5). Hence, if a truncated-Newton algorithm is applied to a penalty function, where at

each stage the Newton equations involve a matrix whose eigenvalues fall into two clusters

at the ends of the spectrum, good performance should result.

87

8 Adapting Truncated-Newton Methods

8.1. Introducton

When Truncated-Newton methods were presented in Chapter 3, the basic algorithm

was deliberately left vague. This was because there are many ways in which such an

algorithm can be implemented. At each step, a choice must be made about how a certain

result or effect is to be achieved.

Some possible choices were outlined, or at least mentioned, in the succeeding chap-

ters. In Chapter 3, algorithms for approximately solving the Newton equations were

developed. In Chapter 4, we described ways of terminating the linear algorithm. And in

Chapter 5, it was shown how the method could be preconditioned using other linear and

non-linear methods.

When designing a program for a specific computer, or when choosing a method to

solve a specific problem, decisions must be made about which method to use and how it

will be implemented. In the case of a truncated-Newton method, many rather detailed

options have to be selected in order to obtain a usable algorithm.

Often, the first question asked is which algorithm is the most efficient for solving the

given problem or a wide class of problems. Answers to this question are usually based on

numerical tests, which were the subject of Chapter 7. But this is not the only criterion

for selecting an algorithm. Another important question is which method is most stable.

This question can sometimes be answered absolutely on the basis of theoretical results

from perturbation theory.

Many other questions arise because of more practical issues such as: (a) the expense

of computing the function being minimized, (b) the availability of second derivatives, (c)

the size of the computer, (d) the availability of routines in a program library, (e) the

number of times a problem is to be solved, etc.

Until recently, it was generally assumed that researchers would be working on a large

central computer, and that professionally written software would be available on-line in

a subroutine library. With the rise of the small-computer industry, this assumption is

now often false, and it is now necessary to take into account the effect of small machines

when designing algorithms. On a small computer, the size of the program can be as

important a consideration as the size of the problem. This is not just because storage

88

space is at a premium: numerical program libraries for small machines are still rare, and

the user must often write his own programs or manually input commercial programs.

Short and simple algorithms can greatly reduce the likelihood of error.

In addition, small computers arc often owned by the user, and are generally used by a

small group of people only. This means that a routine considered slow in a large-machine

environment can be attractive if it offers a substantial reduction in storage requirements.

It could be left to run for long periods, for example overnight, with little inconvenience.

This can greatly influence the choice of an algorithm; the optimal routine for a large

machine can have little resemblance to the optimal routine for a mini-computer.

We mentioned above several questions related to the actual problem being solved—

the difficulty of computing the function, and the availability of second-derivative infor-

mation, for example. Choosing a method based on these criteria often depends on the

efficiency of the method, and the choice must be made on the basis of numerical tests.

Some decisions, however, can be made a priori, such as general decisions about solving

the Newton equations and about how matrix/vector products are to be computed.

In order to simplify the process of choosing a specific algorithm, we summarize in

section 8.2 the possibilities for a truncated-Newton algorithm. There we list the choices

for each step of the algorithm, indicate operation and storage counts, describe possible

interactions with other modules in the method, and mention difficulties that might be

encountered in programming. In 8.3, a couple of sample situations are described, along

with suggestions about how to put together a truncated-Newton algorithm which is well-

suited to the needs of each case.

8.2. Choices for sub-algorithms

In order to specify a truncated-Newton algorithm, five sub-algorithms must be

selected. These are:

1. The algorithm to approximately solve the Newton equations (2.2.3).

2. The non-linear outer algorithm.

3. The linear preconditioning strategy.

4. The termination criterion and forcing sequence for the linear algorithm.

5. The algorithm for computing the Hessian/vector products.

These sub-algorithms have been discussed at length in preceding chapters, but mainly

89

from a theoretical point of view. In this section, we shall take up issues which would

arise when programming and using truncated-Newton methods.

In the succeeding sub-sections, we will examine each of these choices separately,

indicating operation and storage counts. The notation for vectors is global, so that

if a vector name appears in two sections, the same vector is being referred to and no

additional storage is required. Generally, all choices may be made independently, but

usually only one choice may be made from each section. Exceptions to this rule will be

noted as they occur.

For reference, here is a list of the vectors used below:

x the current estimate of the minimizing point F

p search direction

g gradient

Po initial search direction, used in Beale's method

D vector which represents diagonal preconditioning matrix

D\ temporary value of D

E represents sub-diagonal of preconditioning matrix

Ei temporary value of E

Si scratch vectors

8.2.1. Approximately solving the Newton equations

We shall consider six ways of approximately solving the Newton equations (2.2.3):

1. conjugate-gradient (section 2.4)

2. preconditioned conjugate-gradient (Concus et. al [1976])

3. Lanczos (sections 3.3-3.5)

4. preconditioned Lanczos (sections 3.3-3.6, 3.8)

5. MINRES (section 3.7)

6. preconditioned MINRES (sections 3.7-3.8)

The storage requirements and operation counts for these methods are summarized in

Table 8.1 below. Some problems that might be encountered when using these methods

are also mentioned briefly there. For the reasons given in section 3.2, SOR-rclated

methods will not be examined. Clearly, only the preconditioned algorithms can be used

in combination with a non-linear algorithm or a linear preconditioning scheme.

90

The conjugate-gradient algorithm is the simplest algorithm that we consider feasible

for solving the Newton equations. Unfortunately, the conjugate-gradient method is only

designed to solve systems of equations with positive-definite matrices. In an optimization

setting where the Hessian matrix in the Newton equations can be indefinite, this is a

serious deficiency; but if a given problem is known to have a positive-definite Hessian

everywhere, this may not matter. When the Hessian is indefinite, the conjugate-gradient

method may be unstable. The addition of preconditioning can greatly improve the

performance of this method at little computational cost. Therefore, except under extreme

circumstances, a preconditioned conjugate-gradient method is always to be preferred over

the regular conjugate-gradient method.

ALGORITHM STORAGE OPERATIONS COMMENTS

conjugate-gradient (eg) P» »1 - «3 8n,

matrix-vector product

only for positive-

definite systems

preconditioned eg p, Si - 84 8n,

matrix-vector product,

preconditioning step

only for positive-

definite systems

Lanczos p, 81 — 84 12n,

matrix-vector product

complex to program

preconditioned Lanczos P, «1 - «5 12n,

matrix-vector product,

preconditioning step

complex to program

MINRES p, «i - s5 16n,

matrix-vector product

complex to program

preconditioned MINRES P, »1 — «6 16n,

matrix-vector product,

preconditioning step

complex to program

Table 8.1 Choices for the linear algorithm

In order to be able to treat indefinite systems of equations, it is possible to use

a method based on the Lanczos algorithm for tridiagonalizing a symmetric matrix.

It is slightly more expensive to use than the conjugate-gradient method; it is also

more complex to program since it involves three separate sub-algorithms: the Lanczos

tridiagonalization, the modified-Cholesky factorization, and the conjugate-gradient step.

91

In a general setting, though, it is a stable and predictable way of handling indefinite

Hessian matrices, which is not true of the conjugate-gradient algorithm. Again, it is easy

to add a preconditioning step.

The MINRES algorithm is a variant of the Lanczos algorithm which guarantees that

the norm of the residual decreases at each iteration. It is based on a QR factorization

of the tridiagonal matrix resulting from the Lanczos process. Programming this method

is comparable to programming the Lanczos method above, and it is equally easy to

precondition the algorithm.

8.2.2. Non-linear algorithms

We shall look at five non-linear outer algorithms:

1. linesearch (section 1.4)

2. non-linear conjugate-gradient (section 2.4)

3. Beale's method (Gill and Murray [1979])

4. limited-memory quasi-Newton (section 2.5, Gill and Murray [1979])

5. quasi-Newton (section 2.3)

Describing a linesearch as a non-linear outer algorithm may be something of an over-

statement. We are referring to the following method: 1) approximately solve the Newton

equations at the current point to compute a search direction, 2) use this search direction

in the linesearch to compute a new point.

ALGORITHM STORAGE OPERATIONS COMMENTS

linesearch P) 9> z> «1 > 3n, difficult to program

non-linear eg P, 9 3n — An, requires a linesearch

Beale's method P> Po, 9 8n-10n, requires a linesearch

limi ted-memory

quasi-Newton method

(k updates)

p, g, 81 — a2fc k(k + l)/2 X

(one update)

requires a linesearch,

may be preconditioned

Table 8.2 Choices for the non-linear algorithm

With the exception of the line-search, all of these algorithms are used to generate

a preconditioning for the linear algorithm, i.e. the formulas for the outer algorithm

92

implicitly describe some linear operator which can then be applied to any vector. Thus,

these algorithms can be used only with an algorithm which can be preconditioned. Trust-

region methods could also be used as non-linear algorithms for a truncated-Newton

code, but they will not be discussed here. A summary of operation counts and storage

requirements can be found in Table 8.2 above.

A linesearch is the simplest algorithm that is quaranteed to converge that could be

used for the non-linear outer iteration in a truncated-Newton code; also, a linesearch will

be a part of all the other algorithms to be described in this sub-section. Thus, such an

algorithm would be central to any program using a linesearch stategy. The operation

count is difficult to estimate, since it will depend on how many guesses are needed to

"sufficiently decrease" the value of the objective function. If k guesses are used, then

(2k + l)n operations and k function-gradient evaluations will be required. For many

problems, Ä; will be equal to 1 as the minimum is approached. Our numerical tests have

indicated that truncated-Newton methods compute well-scaled search directions, and

that k is often equal to 1 when the Hessian matrix is positive-definite. An efficient linear

search can be difficult to program, but sample programs are often found in program

libraries and even on pocket calculators.

The simplest way to generate a preconditioning for the linear algorithm is to use

a non-linear conjugate-gradient algorithm. Beale's method is a variant of a non-linear

conjugate-gradient algorithm in which the new search direction is computed using both

the most recent direction as well as the first direction.

Limited-memory quasi-Newton algorithms are almost as flexible as truncated-

Newton methods, because it is possible to choose both the type of quasi-Newton update

to use as well as the total number of updates. There is some evidence to indicate (see

Fenelon [1981]) that choosing k bigger than 2 is not economical. It should be noted that

a diagonal preconditioning can be added to this algorithm (section 5.3).

It is also possible to consider using a quasi-Newton method to precondition the linear

algorithm. Unlike all the other methods considered in this section, quasi-Newton methods

have storage and operation counts which are quadratic, not linear, in n. For this reason,

it is difficult to imagine them being competitive with the other methods proposed here.

93

8.2.3. Linear preconditionings

Most of the preconditionings generated during the linear subiteration were discussed

in detail in Chapter 5. However, a few of them were only alluded to in passing. In this

sub-section we will consider the following options:

1. BFGS diagonal preconditioning (section 5.3)

2. rank-one diagonal preconditioning (section 5.3)

3. exact BFGS diagonal preconditioning (sections 5.3 and 5.4)

4. exact diagonal of the Hessian

5. tridiagonal preconditioning based on VTVT (section 5.5)

6. tridiagonal preconditioning based on R~TTR~1 (section 5.5)

7. product of the tridiagonal preconditionings (section 5.6)

8. exact BFGS tridiagonal preconditioning

9. exact BFGS tridiagonal factors preconditioning

As in the previous section, these options can only be used with a preconditioned linear

algorithm. Their operation counts and storage requirements are summarized in Table

8.3 below.

Because a new preconditioning is being developed while the old one is still in use,

two copies of the operator must be kept when using all but the fourth preconditioning

algorithm. Since the rank-one formula does not guarantee positive-definiteness for the

preconditioning, some strategy must be designed to modify the diagonal when negative

elements arise. The exact BFGS formula requires a separate initialization step if a non-

linear preconditioning is also being used (see section 5.3).

The two tridiagonal preconditionings (options 5 and 6 above) are very similar. They

have the same storage requirements, and the programs which implement them have only

minor differences. When using option 6, however, it is easy to re-orthogonalize the new

Lanczos vector using the projection matrix R. Loss of orthogonality can seriously degrade

the performance of conjugate-gradient and Lanczos algorithms; re-orthogonalization can

significantly improve stability and convergence.

• It is only possible to precondition using the diagonal elements of the Hessian if these

elements can be computed at little cost. If this is feasible, then this is a simple and

inexpensive preconditioning to use. If the Hessian is not positive definite everywhere,

some strategy must be devised to handle negative diagonal elements. They might be set

94

to some small positive value, or their absolute value might be used; it is also possible

to use the negative diagonals to compute directions of negative curvature. This latter

option could be used in place of the inner algorithm at the current iteration. A direction

of negative curvature could be computed immediately from the exact Hessian information

and used in the line search with little cost.

ALGORITHM STORAGE OPERATIONS COMMENTS

BFGS diagonal D, Du 8l 9n to update,

n to apply

rank-one diagonal D, Du 8l 6n to update,

n to apply

may be indefinite

exact BFGS diagonal D,Di 8n to update,

n to apply

requires initialization

diagonal of Hessian D n to apply may be costly to obtain,

may be indefinite

tridiagonal VTVT

[k projectors)
«1 — «2fc+l (4fc + l)n to apply,

(fc2 + k)n to form

requires long program

tridiagonal R~TTR-1

(k projectors)
»1 — »2fc+l (4A: + l)n to apply,

(k2 + k)n to form

requires long program

tridiagonal product

{k projectors)
»1 — «2fc+l [4k + l)n to apply,

(fc2 + k)n to form

requires long program

BFGS exact tridiagonal D, Du E, Ei 6n to apply,

14n to update

may be indefinite

Table 8.3 Possible preconditioning strategies

The next three preconditionings are considerably more complex and expensive to

apply than any of the other preconditioning strategies examined here. This is because

they involve the projected Hessians, and information about the projection matrices must

be computed and stored. There is also some choice about how much information will be

used; we assume here that k Lanczos vectors are needed, and that k is small in comparison

with n. Since these preconditionings use information from the Lanczos algorithm, they

cannot be used with the regular linear conjugate-gradient method.

It is possible to use the correspondence between the quasi-Newton and linear

conjugate-gradient algorithms to generate not just the diagonal, but also the principle

95

subdiagonal of Hessian matrix. This method is almost as easy to program as the diagonal

preconditionings above; however, there is a problem with positive-definiteness. Although

the diagonal and the complete Hessian approximation can be guaranteed to be positive

definite, the tridiagonal submatrix may be indefinite, and some strategy must be derived

for modifying it in this case.

Because of the problem with indefiniteness for the preceding method, it would be

preferable to update the diagonal and subdiagonal of the Cholesky factor of the ap-

proximate Hessian. This would guarantee a positive-definite preconditioning. Unfor-

tunately, this is infeasible. An examination of the formulas for updating matrix fac-

torizations in Gill, et al. [1974] shows that updating a portion of the factorization other

than the diagonal requires knowledge of the complete factorization of the old precon-

ditioning. Even if this information were available, accessing it would be an Oln2) process.

Since the preconditioning is being updated at every linear sub-iteration, this method is

uneconomical. Because generally very few linear iterations are performed, even making

an update of this type once per outer iteration would often be impractical.

8.2.4. Termination criteria for the linear algorithm

In Chapter 4, we considered the following convergence criteria for the linear algo-

rithm:

i- IKII/ll3(fc)ll

2. \Qq+i-Qq*/\Qi\l

3.\Qq+1-Qq\l/\\gW\\

i.\Qq+1-Qg\l/\Qq+1\i

All of these formulas require 2n-3n operations to compute. In some cases, for example

criterion 1 in combination with a MINRES algorithm, they are a natural by-product of

the algorithm. When the Lanczos algorithm is used for the linear sub-iteration it may be

necessary to compute and store the residual in order to apply these tests. They are all

easy to program. The choice of a forcing sequence (see section 4.4) can be made solely

on the basis of numerical tests.

96

8.2.5. Computing matrix/vector products

There are three principle methods of obtaining the matrix/vector products Gp

required during the linear sub-iteration. They are:

1. finite differencing along p

2. computing G using (sparse) finite-differencing (section 2.5)

3. computing G

Which method is used depends on the function being minimized; it does, however, have

an important bearing on the remainder of the algorithm. If the Hessian is difficult to

compute, or is large and dense, then finite differencing along p may be the only option

available. This discourages the use of a large number of linear-subiterations since an

additional gradient evaluation is required for each matrix/vector product. For problems

where the function and its first and second derivatives are inexpensive to compute relative

to the cost of solving the linear system, we would again perform few linear iterations, as

the cost of the linear sub-algorithm would dominate the cost of the function and gradient

evaluations.

When G is available and the function is moderately expensive to compute, a larger

number of inner iterations would be encouraged. In this case, the cost of computing the

function and its derivatives dominates the cost of the linear sub-iteration and is the same

at every non-linear outer iteration.

Unfortunately, few absolute statements can be made about choosing this segment of

the truncated-Newton algorithm; a decision should be made in the context of a specific

problem or class of problems.

8.3. Choosing a complete truncated-Newton algorithm

In this section, we will describe what we consider to be the two extreme versions

of a truncated-Newton algorithm. The decisions made about the construction of the

complete algorithm are based mainly on the size of the machine being used—either very

small or large. The ideas used to describe each of these situations can be easily applied

to more specialized cases.

In the introduction to this chapter, we mentioned a number of issues which might

affect the choice of a particular algorithm. Some of these involved the function being

97

minimized. Although a truncated-Newton algorithm can be used for general optimiza-

tion, we consider that it will be most useful for large-scale minimization problems.

In this context, we take "large-scale" to mean that it is difficult to use second-

derivative information. This might be because the dimension of the problem is large,

in which case storing or factoring the second-derivative matrix is impossible. It might

also mean that the Hessian matrix is expensive to compute or is unavailable. A further

possibility is that the Hessian matrix may be expressed as the product of several large

sparse matrices, and it is uneconomical to obtain its elements explicitly (this is the case

in large constrained optimization problems (see Chapter 6)).

8.3.1 The large-machine case

When working on a large machine, the only important consideration is efficiently

finding the solution to the problem in ä stable manner. All the necessary algorithms are

assumed to be professionally coded and available in a program library, and the size of the

program is not an issue (since it is pre-compiled in an object-code library). The length

and complexity of the algorithms are not factors in any decision. However, the storage

requirements for the method (the number of vectors required) are still important.

Thus, a preconditioned Lanczos algorithm should be selected to approximately solve

the Newton equations. Alternatively, a preconditioned MINRES algorithm might be

chosen if it could be shown to be more effective for the class of problems being solved;

when terminated using ||r,||, MINRES is almost as efficient as a Lanczos method. As

a non-linear algorithm, we would probably select a two-step diagonally-preconditioned

limited-memory quasi-Newton method. Such an algorithm has been shown to be efficient

and cost-effective for large optimization problems (see Gill and Murray [1979], Fenelon

[1981]), and has performed well in our numerical tests here.

We would choose one of the diagonal preconditioning schemes to precondition the

linear algorithm. They all have low storage requirements and arc inexpensive to generate.

The tridiagonal preconditioning schemes are considerably more expensive to use and less

successful in practise; they would have to perform much better in numerical tests before

they could be recommended for general use. Our results indicate that the exact BFGS

diagonal preconditioning is the most effective of the diagonal schemes. This choice is

based on numerical tests, storage requirements, and the stronger theoretical justifications

for this scheme. Since we are unconcerned about the length of the program, it would

be possible to include preconditioning with the diagonal elements of the Hessian as a

user-specified option when these elements can be computed easily.

The other options for the algorithm (the termination criterion and the forcing

sequence) would be chosen on the basis of numerical tests. It would depend somewhat on

the other choices made for the algorithm. The method used to compute matrix/vector

products could be chosen by the user of the code at run-time.

8.3.2 The small-machine case

The major difference between the small- and the large-machine cases is that the size

of the program is now a factor in the choice of the algorithm. It is impossible to store a

large code in the memory of a small machine. For this reason, simple iterative methods

are often preferable to direct methods for solving many problems. Also, because the user

is often not paying for computer time, and time-sharing is not in effect, storage can be

a more important issue than speed in the choice of an algorithm.

Another reason to favor simple and short algorithms is that a small computer will

not usually come complete with a program library. The user must either write his own

programs, or at least may be obliged to input the program by typing. In order to decrease

the probability of error, and also to reduce the overall time needed to solve a problem,

easy-to-program methods are preferred.

For these reasons, a preconditioned conjugate-gradient algorithm could be chosen to

approximately solve the Newton equations. In extreme cases, the preconditioning step

could be omitted; it is, however, a simple addition to the program and it can greatly

speed convergence. A linesearch could be chosen as the non-linear algorithm. Because

of possible indefiniteness, the search direction p should be monitored at every linear

iteration to insure that it is a descent direction. Although a simple non-linear conjugate-

gradient method is easy to add, effective methods of this type include such features as

restarting strategies which can increase the complexity of the code.

As in the large-machine case, a diagonal preconditioning should be used, unless

storage is at such a premium that no preconditioning can be included. The limitations

of the small machine do not seriously affect the choice of the termination criterion and

the forcing sequence. The matrix/vector products would probably be computed by finite

99

differencing along p, for reasons of simplicity.

The analysis of these two special cases gives some indication of how a truncated-

Newton algorithm can be adapted to a specific computing environment. Final decisions

about preconditioning and termination rules must be made on the basis of numerical

tests. Some recommendations were made on the basis of the results in Chapter 7. When

solving specific classes problems in special environments, though, some of the detailed

choices might be made differently.

100

Appendix

The following tables summarize the results of the tests discussed in section 7.7. Chapters 7 and 8 may

be useful in interpreting the tables given here.

Table 1—Comparison of preconditioning strategies using a subset of the test functions.

Preconditioning Penl GenRs GenR Calls Call Cheb
Rank-2 D 7 32 33 183 33 315 12 94 12 191 8 83
Rank-1 D 7 32 34 192 34 338 13 101 13 236 8 84
BFGSD 7 32 34 188 34 316 12 93 12 194 9 91
Exact D 5 24 39 224 39 355 11 78 11 63 8 77
VTVT

DNC DNC DNC DNC DNC 17 232
R-TTR-I 8 40 DNC DNC DNC DNC 21 230
Product T 10 57 DNC DNC DNC DNC DNC
BFGST 10 174 41 223 41 321 12 93 12 181 14 181

Table 2—Comparison of forcing sequences {ipk} using a subset of the test functions. <j>k = min {l/Jb, ||ffW||},

and the forcing function (4.3.6) is being used.

Forcing Sequence Penl GenRs GenR Call s Call . Cheb

ifc = .5 8 42 39 204 39 247 29 213 29 164 9 56
V-* = .i 8 44 32 175 32 297 8 59 8 164 7 83
1>k = .05 8 44 35 207 35 427 7 51 7 172 6 79
*k = 01 8 45 33 197 33 149 5 38 5 140 10 152
V>* = max{^fe,.5} 7 31 41 223 41 275 31 226 31 169 9 56
ipk =max{^jfc,.l} 7 32 34 188 34 301 13 99 13 180 9 79
rj)k =max{^fc,05} 7 32 35 191 35 317 12 93 12 173 9 90
r/>fc = max{^jt,.01} 7 32 34 188 34 316 12 93 12 194 9 101
MAXIT=5 7 32 35 181 35 235 DNC DNC 11 69
MAXIT=10 7 32 35 194 35 316 19 141 19 189 9 79
MAXIT=15 7 32 34 188 34 316 15 113 15 187 9 92
MAXIT=20 7 32 34 188 34 316 14 106 14 201 9 91

101

Table 3—Comparison of forcing sequences {V>*} using a subset of the test functions. 0* = min {l/k, ||<r*'||},

and the forcing function (4.3.5) is being used.

Forcing Sequence . Penl GenRs GenR Calls Call Cheb

V>* = 1.00* 7 32 37 207 37 391 10 77 10 177 11 130

ipk = 1.50* 7 32 35 183 35 342 10 77 10 163 8 80

V»* = 2.00* 7 32 34 190 34 344 11 88 11 181 10 96

0* = 2.50* 7 32 38 210 38 402 11 84 11 168 8 59

rl>k = 3.00* 7 32 38 205 38 347 13 102 13 164 10 90

Tables 4—Comparison of a number of truncated-Newton routines with various diagonal preconditionings.

The full set of test functions is used with t) = .25.

Table 4A—Smaller functions. Differencing along search direction.

Function PC TNI TN2 TN3 MINR

Penl 1 7 29 7 32 7 32 7 38

Start 3 2 7 29 7 32 7 32 7 38

n = 50 3 7 29 7 32 7 32 7 39

Pen2 1 11 55 10 56 10 57 16 93

Start 3 2 10 49 10 56 10 56 17 100

n = 50 3 11 64 10 58 10 59 17 102

Pen3 1 10 49 10 47 9 39 10 53

Start 3 2 10 54 10 48 9 45 11 67

n = 50 3 10 47 10 47 10 45 11 66

GenR 1 31 370 34 383 33 315 37 245

Start 2 2 32 417 36 519 34 338 38 435

n==50 3 31 330 35 342 34 316 36 329

Call 1 9 176 10 175 12 191 11 182

Start 1 2 10 273 10 191 13 236 11 235

n = 50 3 10 199 10 163 12 194 12 200

Cal2 1 7 70 6 58 9 69 11 103

Start 1 2 8 87 8 79 10 84 11 141

n = 50 3 7 69 7 66 10 86 9 80

Cal3 1 7 112 9 99 10 122 8 97

Start 1 2 7 107 11 96 11 127 9 124

n = 50 3 7 112 11 101 11 114 9 123

102

Table 4B—Larger functions. Differencing along search direction.

Function PC TNI TN2 TN3 MINR

Penl

Start 3

n=100 *

1
2
3

2 11
2 11
2 11

2 11
2 11
2 11

2 11
2 11
2 11

2 12
2 12
2 12

Pen2

Start 3

n=100

1
2
3

6 33
6 32
6 29

5 24
5 24
5 25

5 27
5 27
5 26

6 36
6 36
6 42

Pen3

Start 3

n= 100

1
2
3

11 68
11 115
11 65

10 61
11 99
10 58

10 59
10 59
10 64

11 69
11 64
11 62

GenR

Start 2

n=100

1
2
3

61 764
63 1090
57 684

63 754
64 1046
62 796

61 683
68 979
64 672

65 610
65 653
67 1183

Call

Start 1

n=100

.1
2
3

11 413
10 511
10 409

10 302
12 521
11 332

14 335
18 483
15 375

12 351
14 464
16 1228

Cal2

Start 1

n=100

1
2 .
3

7 154
9 219
8 117

7 115
7 142
6 107

11 141
13 140
11 131

12 166
15 318
10 407

Cal3

Start 1

n=100

1
2
3

7 154
7 171
7 159

13 194
11 220
16 229

13 199
14 232
14 207

10 237
11 259
11 498

Table 4C—Miscellaneous smaller functions. Differencing along search directions.

Function PC TNI TN2 TN3 MINR

Cheb 1 8 74 8 83 8 83 10 79
Start 2 2 8 72 8 89 8 84 10 94
n = 20 a 7 53 8 80 9 91 10 81
QOR l 6 25 6 25 6 24 7 32
Start 1 2 6 25 6 24 6 25 7 34
n = 50 3 6 25 6 24 6 24 7 38
GOR 1 7 56 8 65 8 60 9 77
Start 1 2 7 59 8 87 8 68 9 80
n = 50 3 7 60 8 65 8 57 9 111
ChaR 1 14 96 14 96 15 106 16 117
Start 4 2 14 156 15 133 15 154 15 122
n = 25 3 11 77 12 77 12 77 16 151

103

Table 4D—Sparse finite-differencing.

Function PC TNI TN2 TN3 MINR

GenRs 1 31 179- 34 193 33 183 37 187
SUrt 2 2 32 190 36 204 34 192 38 195
n = 50 3 31 168 35 183 34 188 36 184
GenRs 1 61 357 63 356 61 348 65 339
SUrt 2 2 63 367 64 376 68 409 65 326
n=100 3 57 335 62 348 64 379 67 356
Call« 1 9 71 10 77 12 94 11 87
Start 1 2 10 78 10 77 13 101 11 89
n = 50 3 10 78 10 77 12 93 12 94
Calls 1 11 85 10 81 14 109 12 98
Start 1 2 10 78 12 95 18 139 14 109
n=100 3 10 79 11 89 15 120 16 125
Cal2s 1 7 50 6 43 9 64 11 71
SUrt 1 2 8 57 8 57 10 71 11 81
n = 50 3 7 50 7 50 10 71 9 68
Cal2s 1 7 50 7 51 11 78 12 88
SUrt 1 2 9 64 7 50 13 92 15 111
n=100 3 8 57 6 44 11 78 10 73
Cal3s 1 7 50 9 64 10 71 8 60
Start 1 2 7 50 9 64 12 85 9 67
n = 50 3 7 50 11 78 11 78 9 69
Cal3s 1 7 50 13 92 13 92 10 ,76
SUrt 1 2 7 50 11 78 14 99 11 83
n=100 3 7 50 16 113 14 99 11 81
QORs 1 6 55 6 55 6 55 7 64
SUrt 1 2 6 55 6 55 6 55 7 64
n = 50 3 6 55 6 55 6 55 7 65
GORs 1 7 64 8 73 8 74 9 84
SUrt 1 2 7 64 8 73 8 74 9 85
n==50 3 7 65 8 73 8 73 9 83
ChaRs 1 14 74 14 74 15 77 16 79
Start 4 2 14 77 15 79 15 81 15 74
n = 25 3 11 56 12 58 12 58 16 81

Table 4E—Totals. To compute the sparse totals, non-sparse results were used whenever a sparse result was

not available.

Function PC TNI TN2 TN3 MINR

Totab
sparse

1
2
3

222 1404
227 1492
215 1341

232 1473
239 1567
236 1479

243 1553
262 1712
250 1620

260 1613
269 1695
266 1683

Totals
regular

1
2
3

.222 2709
227 3477
215 2539

232 2580
239 3417
236 2613

243 2553
262 3180
250 2581

260 2597
269 3276
266 4752

104

Tables 5—Comparison of various truncated-Newton routines against other optimization algorithms. All

test functions are used with i; = .25, .1, .001.

Table 5A—Smaller functions. Differencing along search direction.

Function »? PLMA QNM MNA TN PBTN BTN
Penl .25 22 53 27 33 17 18 7 29 10 46 10 46
Start 3 .1 8 27 8 26 9 25 7 30 10 48 10 48
n = 50 .001 8 32 8 31 7 29 3 19 6 40 6 40
Pen2 .25 52 118 134 242 17 17 11 64 10 60 14 89
Start 3 .1 28 76 99 322 9 31 12 78 10 64 13 86
n = 50 .001 15 71 73 341 6 26 12 95 9 67 12 118
Pen3 .25 40 76 67 135 40 44 10 47 11 60 10 62
Start 3 .1 38 76 63 150 12 44 9 46 9 52 10 61
n = 50 .001 28 71 56 155 11 48 9 54 10 63 10 72
GenR .25 108 201 128 287 62 202 31 330 42 584 33 499
Start 2 .1 119 263 118 323 66 257 33 348 36 469 32 518
n = 50 .001 119 330 118 412 88 392 34 395 37 468 35 614
Call .25 194 366 ■ 162 191 7 9 10 199 8 227 16 978
Start 1 .1 204 401 89 214 6 11 9 158 8 232 17 1151
n = 50 .001 205 456 88 269 6 17 9 166 7 252 13 787
Cal2 .25 64 106 28 52 4 4 7 69 7 104 8 133
Start 1 .1 61 118 28 54 4 4 7 69 7 104 8 133
n = 50 .001 60 123 28 67 4 6 7 71 7 107 8 135
Cal3 .25 80 152 90 114 6 6 7 112 7 125 7 206
Start 1 .1 78 155 59 135 5 7 7 112 7 127 7 206
n=50 .001 77 161 59 161 5 11 7 113 7 125 8 289

105

Table 5B—Larger functions. Differencing along search direction.

Function V PLMA QNM MNA TN PBTN BTN

Penl 25 17 40 NR NR 2 11 2 11 2 11
Start 3 1 2 9 NR NR 2 11 2 11 2 11
n=100 001 ' 2 10 NR NR 2 12 2 12 2 12
Pen2 25 14 28 NR NR 6 29 6 26 6 25
Start 3 1 7 18 NR NR 6 30 .5 23 5 24
n = 100 001 7 29 NR NR 6 41 5 33 5 36
Pen3 25 49 85 NR NR 11 65 11 75 13 79
Start 3 1 48 94 NR NR 11 67 11 75 13 89
n=100 001 35 83 NR NR 11 77 11 89 11 91
GenR 25 191 365 NR NR 57 684 73 1055 60 1150
Start 2 1 192 410 NR NR 60 775 72 1012 62 1153
n=100 001 188 528 NR NR 58 782 63 1062 60 1197
Call 25 423 819 NR NR 10 409 9 828 26 3855
Start 1 1 429 854 NR NR 10 409 8 570 23 3214
n= 100 001 416 905 NR NR 10 372 8 602 26 3948
Cal2 25 112 204 NR NR 8 117 7 172 8 256
Start 1 1 107 206 NR NR 8 117 7 172 8 256
n= 100 001 113 228 NR NR 8 122 8 199 8 259
Cal3 25 143 270 NR NR 7 159 7 196 9 508
Start 1 1 142 281 NR NR 7 168 7 196 9 636
n=100 001 138 284 NR NR 7 176 7 195 9 617

Table 5C—Miscellaneous smaller functions. Differencing along search direction.

Function V PLMA QNM MNA TN PBTN BTN

Cheb .25 38 75 32 65 29 121 7 53 10 87 10 104
Start 2 .1 33 71 28 67 24 116 8 68 9 105 9 96
n = 20 .001 33 90 28 92 30 161 9 90 10 129 11 164
QOR .25 14 29 23 39 3 3 6 25 5 25 5 29
Start 1 .1 14 29 13 27 3 3 6 25 5 25 5 29
n = 50 .001 14 29 13 27 3 3 6 25 5 25 5 29
GOR .25 14 71 29 59 5 5 7 60 7 77 7 74
Start 1 .1 14 76 29 59 5 5 7 61 7 77 7 74
n = 50 .001 42 97 29 72 5 7 7 67 7 85 6 61
ChaR .25 40 82 48 97 15 28 11 77 11 121 10 88
Start 4 .1 37 76 46 122 16 48 11 75 11 91 10 94
n = 25 .001 43 119 47 164 12 47 14 126 1 4 11 104

106

Table 5D—Sparse finite-differencing.

Function V PLMA QNM MNA TN PBTN BTN

GenRs .25 108 201 128 287 62 202 31 168 42 239 33 196
Start 2 .1 119 263 118 323 66 257 33 198 36 218 32 197
n = 50 .001 119 330 118 412 88 392 34 245 37 258 35 252
GenRs .25 191 365 NR NR 57 335 73 415 60 346
Start 2 .1 192 410 NR NR 60 370 72 430 62 398
n=100 .001 188 528 NR NR 58 422 63 474 60 441
Calls .25 194 366 162 191 7 9 10 78 8 63 16 120
Start 1 .1 204 401 89 214 6 11 9 73 8 66 .17 130
n = 50 .001 205 456 88 269 6 17 9 88 7 72 13 117
Calls .25 423 819 NR NR 10 79 9 72 26 191
Start 1 .1 429 854 NR NR 10 85 8 68 23 178
n=100 .001 416 905 NR NR 10 95 8 79 26 227
Cal2s .25 64 106 28 52 4 4 7 50 7 50 8 57
Start 1 .1 61 118 28 54 4 4 7 50 7 50 8 57
n = 50 .001 60 123 28 67 4 6 7 52 7 51 8 59
Cal2s .25 112 204 NR NR 8 57 7 50 8 57
Start 1 .1 107 206 NR NR 8 57 7 50 8 57
n= 100 .001 113 228 NR NR 8 59 8 58 8 59
Cal3s .25 80 152 90 114 6 6 7 50 7 50 7 50
Start 1 .1 78 155 59 135 5 7 7 50 7 52 7 50
n = 50 .001 77 161 59 161 5 11 7 59 7 58 8 68
Cal3s .25 143 270 NR NR 7 50 7 50 -■ 9 57
Start 1 .1 142 281 NR NR 7 51 7 52 9 65
n = 100 .001 138 284 NR NR ' 7 60 7 60 9 77
QORs .25 14 29 23 39 3 3 6 55 5 46 5 46
Start 1 .1 14 29 13 27 3 3 6 55 5 46 5 46
n = 50 .001 14 29 13 27 3 3 6 55 5 46 5 46
GORs .25 14 71 29 59 5 5 7 65 7 65 7 64
Start 1 .1 14 76 29 59 5 5 7 66 7 65 7 64
n = 50 .001 42 97 29 72 5 7 7 73 7 71 6 59
ChaRs .25 40 82 48 97 15 28 11 56 11 56 10 51
Start 4 .1 37 76 46 122 16 48 11 58 11 .60 10 52
n = 25 .001 43 119 47 164 12 47 14 98 1 3 11 70

Table 5E—Totals. To compute the sparse totals, non-sparse results were used whenever a sparse result was

not available.

Function PLMA QNM MNA TN PBTN BTN

Totals, sparse
Totals, regular

4773 10026
4773 10026

NA

NA

NA

NA

654 4478
654 7989

684 4719
684 10889

749 5368
749 24644

107

Tables 6—Comparison of various values of»/ (.25, .1, .001, .5, .7, .9) for the best truncated-Newton routine.

All test functions are Used.

Table 6A—Differencing along search direction.

Function n .25 .1 .001 .5 .7 .9
Penl 50 7 29 7 30 3 19 16 41 16 41 16 41
Penl 100 2 11 2 11 2 12 16 42 16 42 16 42
Pen2 50 11 64 12 78 12 95 18 52 18 52 18 51
Pen2 100 6 29 6 30 6 41 10 26 10 26 10 26
Pen3 50 10 47 9 46 9 54 13 56 13 56 13 56
Pen3 100 11 65 11 67 11 77 14 69 14 69 14 69
GenR 50 31 330 33 348 34 395 35 420 33 336 34 360
GenR 100 57 684 60 755 58 782 60 844 60 802 59 688
Call 50 10 199 9 158 9 166 9 190 9 190 9 165
Call 100 10 409 10 409 10 372 10 402 11 444 11 480
Cal2 50 7 69 7 69 7 71 7 69 7 69 7 69
Cal2 100 8 117 8 117 8 122 8 117 8 117 8 117
Cal3 50 7 112 7 112 7 113 7 112 7 112 7 112
Cal3 100 7 159 7 168 7 176 7 159 7 159 7 159
Cheb 20 7 53 8. 68 9 90 7 53 9 70 12 119
QOR 50 6 25 6 25 6 25 6 25 6 25 6 25
GOR 50 7 60 7 61 7 67 7 60 7 60 7 60
ChaR 25 11 77 11 75 14 126 14 82 14 82 14 82
Totals 215 2539 220 2627 219 2803 264 2819 265 2752 268 2718

Table 6B—Sparse finite-differencing.

Function n .25 .1- .001 .5 .7 .9
GenRs 50 31 168 33 198 34 245 35 197 33 175 34 191
GenRs 100 57 335 60 370 58 422 60 344 60 348 59 327
Calls 50 10 78 9 73 9 . 88 9 65 9 65 9 65
Calls 100 10 79 10 85 10 95 10 73 11 81 11 80
Cal2s 50 7 50 7 50 7 52 7 50 7 50 7 50
Cal2s 100 8 57 8 57 8 59 8 57 8 57 8 57
Cal3s 50 7 50 7 50 7 59 7 50 7 50 7 50
Cal3s 100 7 50 7 51 7 60 7 50 7 50 7 50
QORs 50 6 55 6 55 6 55 6 55 6 55 6 55
GORs 50 7 65 7 66 7 73 7 65 7 65 7 65
ChaRs 25 11 56 11 58 14 98 14 66 14 66 14 66
Totals 161 1043 165 1113 167 1316 170 1072 169 1062 169 1056

108

Tables 7—Comparison of truncated-Newton and modified-Newton algorithms, ignoring function/gradient

evaluations required to compute the matrix/vector products for TN.

Table 7A—Smaller functions.

, Function V MNA TN
Penl .25 17 18 7 18
Start 3 .1 9 25 7 19
n = 50 .001 7 29 3 15
Pen2 .25 17 17 11 35
Start 3 .1 9 31 12 42
n = 50 .001 6 26 12 57
Pen3 .25 40 44 10 14
Start 3 .1 12 44 9 16
n = 50 .001 11 48 9 24
GenR .25 62 202 31 75
Start 2 .1 66 257 33 99
n = 50 .001 88 392 34 143
Call .25 7 9 10 18
Start 1 .1 6 11 9 19
n = 50 .001 6 17 9 34
Cal2 .25 4 4 7 8
Start 1 .1 4 4 7 8
n = 50 .001 4 6 7 10
Cal3 .25 6 6 7 8
Start 1 .1 5 7 7 8
n = 50 .001 5 11 7 17

Table 7B—Miscellaneous smaller functions and totals.

Function V MNA TN
Cbeb .25 29 121 7 16
Start 2 .1 24 116 8 17
n = 20 .001 30 161 9 29
QOR .25 3 3 6 7
Start 1 .1 3 3 6 7
n = 50 .001 3 3 6 7
GOR .25 5 5 7 9
SUrt 1 .1 5 5 7 10
n==50 .001 5 7 7 17
ChaR .25 15 28 11 23
Start 4 .1 16 48 11 25
n = 25 .001 12 47 14 56
Totals 541 1753 347 910

109

Bibliography

Brent, R.P. (1973), "Some efficient algorithms for solving systems of non-linear equa-

tions," SLAM Num. Anal., 10, pp. 327-344.

Broyden, CG. (1971), "The convergence of an algorithm for solving sparse non-linear

systems," Math. Comp., 25, pp. 285-294.

Bunch, J.R., and Parlett, B.N. (1971), "Direct methods for solving symmetric indefinite

systems of linear equations," SIAM Num. Anal, 8, pp. 639-655.

Bunch, J.R., and Rose, D.J. (1976), Sparse Matrix Computations, Academic Press, New

York.

Concus, P., Golub, G., and O'Leary, D.P. (1976), "A generalized conjugate-gradient

method for the numerical solution of elliptic partial differential equations," in

Sparse Matrix Computations (J. Bunch and D. Rose, ed.), pp. 309-332, Academic

Press, New York.

Davidon, W. (1959), ''Variable metric methods for minimization," A.E.C. Res. and

Develop. Report ANL-5990, Argonne National Laboratory.

Dax, A., and Kaniel, S. (1977), "Pivoting techniques for symmetric Gaussian elimination,"

Num. Math., 28, pp. 221-241.

Dembo, R.S., Eisenstat, S.C., and Steihaug,T. (1980), "Inexact Newton methods," Tech.

Report Series B: 47, School of Organization and Management, Yale University.

Dembo, R.S., and Steihaug, T. (1980), "Truncated-Newton methods for large-scale

optimization," presented at the ORSA/TIMS Joint National Meeting in

Washington, DC, May 1980.

Dennis, J.E., and More, J.J. (1977), "Quasi-Newton methods, motivation and theory,"

SLAM Review, 19, pp. 46-89.

Fenelon, M. (1981), "Preconditioned conjugate-gradient-type methods for large-scale un-

constrained optimization," Ph.D. thesis, Dcpt. of Operations Research, Stanford

University.

110

Fletcher, R. (1965), "Function minimization without evaluating derivatives— a review,"

Comput. J., 8, pp. 33-41.

Fletcher, R., and Reeves, CM. (1964), "Function minimization by conjugate gradients,"

Comput. J., 7, pp. 149-154.

Forsythe, G.E., and Straus, E.G. (1955), "On best conditioned matrices," Proc. Amer.

Math. Soc, 6, pp. 340-345.

Gill, P.E., Golub, G., Murray, W., and Saunders, M.A. (1974), "Methods for modifying

matrix factorizations," Math. Comp., 28, pp. 505-536.

Gill, P.E., and Murray, W. (1972), "Quasi-Newton methods for unconstrained optimiza-

tion," J. Inst. Maths. Applies., 9, pp. 91-108.

Gill, P.E., and Murray, W. (1973a), "The numerical solution of a problem in the calculus

of variations," in Recent Mathematical Developments in Control {D.i. Bell, ed.),

pp. 97-122, Academic Press, London and New York.

Gill, P.E., and Murray, W. (1973b), "Quasi-Newton methods for linearly constrained

optimization," Report NAC 32, National Physical Laboratory, England.

Gill, P.E., and Murray, W. (1974a), "Newton-type methods for unconstrained and

linearly constrained optimization," Math. Prog, 17, pp. 311-350.

Gill, P.E., and Murray, W. (1974b), "Safeguarded steplength algorithms for optimiza-

tion using descent methods," Report NAC 37, National Physical Laboratory,

England.

Gill, P.E., and Murray, W. (1976), "Nonlinear least squares and nonlinearly constrained

optimization," in Numerical Analysis, Lecture Notes in Mathematics no. 506

(G.A. Watson, ed.), pp. 134-147, Springer-Verlag, Berlin.

Gill, P.E., and Murray, W. (1978), "Algorithms for the solution of the nonlinear least-

squares problem," SIAM Num. Anal., 15, pp. 977-992.

Gill, P.E., and Murray, W. (1979), "Conjugate-gradient methods for large-scale nonlinear

optimization," Report SOL 79-15, Operations Research Dept., Stanford Univer-

sity.

Ill

Gill, P.E., Murray, W., and Pitficld, R.A. (1972), "The implementation of two revised

quasi-Newton algorithms for unconstrained optimization," Report NAC 11, Na-

tional Physical Laboratory, England.

Greenstadt, J.L. (1967), "On the relative inefficiencies of gradient methods," Math.

Comp, 21, pp. 360-367.

Hebden, M.D. (1973), "An algorithm for minimization using exact second derivatives,"

Tech. Report T.P. 515, A.E.R.E., Theoretical Physics Division, Harwell,

England.

Hestenes, M. (1980), Conjugate direction methods in optimization, Springer-Verlag, Ber-

lin.

Hestenes, M., and Stiefel, E. (1952), "Methods of conjugate gradients for solving linear

systems," J. Res. Nat. Bur. Standards, 49, pp. 409-436.

Lanczos, C. (1950), "An iteration method for the solution of the eigenvalue problem of

linear differential and integral operators," J. Res. Nat. Bur. Standards, 45, pp.

255-282.

Luenberger, D.G. (1973), Introduction to linear and nonlinear programming, Addison-

Wesley, Reading, MA.

Marwil, E.S. (1978), "Exploiting sparsity in Newton-like methods," Ph.D. thesis, Dept.

of Computer Science, Cornell University.

McCormick, G.P., and Pearson, J.D. (1969), "Variable metric methods and unconstrained

optimization," in Optimization (R. Fletcher, ed.), pp. 307-325, Academic Press,

London and New York.

Murray, W. (1972), "Second derivative methods," in "Numerical methods for uncon-

strained optimization" (W. Murray, ed.), Academic Press, London and New

Yorki pp. 57-71.

Murtagh, B.A. and Saunders, M.A. (1978), "Large-scale linearly constrained optimiza-

tion," Math. Prog., 14, pp. 41-72.

112

Murtagh, B.A. and Saunders, M.A. (1980, revised Fcbrurary 1981), "A projected Lagran-

gian algorithm and its implementation for sparse nonlinear constraints," Report

80-1R, Operations Research Dept., Stanford University.

Ortega, J.M., and Rheinbolt, W.C. (1970), Iterative solution of nonlinear equations in

several variables, Academic Press, London and New York.

Paige, C.C., and Saunders, M.A. (1975), "Solution of sparse indefinite systems of linear

equations," SLAM Num. Anal., 12, pp. 617-629.

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood

Cliffs, NJ.

Parlett, B.N., and Scott, D.S. (1979), "The Lanczos algorithm with selective or-

thogonalization," Math. Comp., 33, pp. 217-238.

Powell, M. J.D. (1970), "A FORTRAN subroutine for unconstrained minimization, requir-

ing first derivatives of the objective function," Report AERE-R 6469, Atomic

Energy Research Establishment, Harwell, England.

Powell, M.J.D. (1976), "Some convergence properties of the conjugate gradient method,"

Math. Prog., 11, pp. 42-49.

Powell, M.J.D. (1977), "Restart procedures for the conjugate gradient method," Math.

Prog., 12, pp. 241-254.

Powell, M.J.D., and Toint, P. (1979), "The estimation of sparse Hessian matrices," SLAM

Num. Anal, 16, pp. 1060-1074.

Rosenbrock, H.H. (1960), "An automatic method for finding the greatest or least value

of a function," Comput. J., 3, pp. 175-184.

Schubert, L.K. (1970), "Modification of a quasi-Newton method for nonlinear equations

with a sparse Jacobian," Math. Comp., 24, pp. 27-30.

Sherman, A.H. (1978), "On Newton-iterative methods for the solution of systems of

nonlinear equations," SLAM Num. Anal., 15, pp. 755-771.

Steihaug, T. (1980), "Quasi-Newton methods for large-scale nonlinear problems," Ph.D.

thesis, School of Organization and Management, Yale University.

113

Stewart, G.W. (1967), "A modification of Davidon's method to accept difference ap-

proximations of derivatives," J. ACM, 14, pp. 72-83.

Thapa, M. (1980), "Optimization of unconstrained functions with sparse Hessian

matrices," Ph.D. thesis, Dept. of Operations Research, Stanford University.

Toint, P. (1978), "Some numerical results using a sparse matrix updating formula in

unconstrained optimization," Math. Comp., 32, pp. 839-851.

van der Sluis, A. (1969), "Condition numbers and equilibration of matrices," Num. Math.,

14, pp. 14-23.

Vardi, A. (1980), "A trust region algorithm for unconstrained minimization: convergence

propei ties and implementation," ICASE Report 80-35.

Wilkinson, J.H. (1965), The algebraic eigenvalue problem, Oxford Univerity Press, Lon-

don.

114

